=T

pE& Sl

-GHISOFT A5
&0 Hallam Moor Date!
Liden SWINDON
SN3 6LS Software Release Note HP4TS 1,3.1
Your refi
Tel, (0793) 26616 Qur refi

mplementing the P’ Compiler Option,

The fcllowing note contains details on implementing the P (printer) compiler option within Hisoft Pascz

- ZX SPECTRUM version §.3.

The implementation is effected through a Pascal program which is given below. This program shoul
entered using the ‘1' command and saved to tape using the ‘P’ command. Subsequently, whenever you
beginning a session of work with the compiler in which you require the IX printer to be supported, si
load the program from tape with the ‘G’ command, compile it and run it - the program can Row be deleted
memory using the ‘D’ command. Once the program has been executed it is then possible to use the ‘P’ com
option to toggle output between the screen and the IX printer to obtain compiler tistings. Alternati
outputting a CTRLP (CHR(16) character via WRITE or WRITELN will toggle the output when an o

program is exeasted - see the example program below.

The program to implament the P’ pption is now given: .

PROGRAM PRINTMOD;

BEGIN

POKE(£6008,£E9E1) 5 .

INLINE(SCD,£08,£60,£11,£21,£00,£19,
£11,
£1T,£74,
£01,£35,£00,£ED,£50,£11,£80,£50,CDE,EUZ,(ED,[BO,
£1E,£90,£DE,£03,£ED,£BO,£1E,£89,£05,£0‘,IED,(BQ,
£18,£3F ,£AF,£32,
£52,E7A,
£3£,£FE,£C3,£01,£16,£FE,£OC,£CA.£94,tSO,LFE,tor,
£20,205,£3E,£10,£C3,£AC,£50,£FE,£10,£C2,£AC,£60,£3A;
£52,£74,
£EE,£01,£32,
£52,£74,
£3E,£FE,£28,£02,£3E,£03,£CD,£01,£15,£C3,289,
£50,£F0,£35,£52,CFF,£F3,£C9,
£17,£74,
£C3,
£20,£74, : TREE
£CD,
£47,£74, , ooee
£00)

L. 2 2 4 4

L 2 2 o4

a*eed

L2 2 24

END.

ware.....HIgh quality microcomputer SOFTware.....Hlgh quality microcomputi

ality microcomputer SOFT
Hallam Moor Liden SWINDON SN3 &LS.

Proprietor: D.G. Lank 60

S

%ﬁ—@jmﬁsnn o
E@ e oo

—_— SN2 &LS

——— g

Tel. (0793) 2661¢

HISOFT PASCAL 4 - VERSION 1-4,

The release numbsr of Hisoft Pascal 40 and Hisoft Pascal 4T is naw 1°4,
effective from 31 October 1982. : °.

The diffsrences betueen Version 1°1 and Version 1°4 age given below:

1. A bug in the svaluation of expressions (which led to expressions like
14+50R(2) beihg incoprectly evaluated) has.been corrected.

2. A bug in the evaluation of expressions (uhich led to expressions like
I1+(I+1) being incorrectly evaluated) has bsen corrected.

3. A bug that caused the incorract evaluation of the result of an integer
to rsal compariscn has been corrected.

4. Hisoft Pascal 4T only: the documented bug in the sditor 'S' sub-command
(see paege 38 of the Programmer's Manual) has been corrected = 'S’ can

mou be used st any time.
[

S, Hisoft Pascal 4T only: using the 17! command Trom uithin the editor
to find a charscter string nou positions the editing cursor at the
beginning of any found occurrence of the string cf. pages 37 and 38

of the Programmer's Manual.

6. Hisoft Pascal 4T only: a neu editor command has besen incorporated. The
1X' command displays, in hexadecimal, the current snd address of the
compiler. This allous tha user to make & working copy of the compiler
package and thus minimises ths danger of corrupting the mastar tape.
Te do this, find ths start address of the package from your
Implementation Note and the end address of ths package using the 'X!
command. Now use the relevant opserating systeam command to dump this
block of memaory t0 taps. Kots that you will not be able to use the
HP4T loadsr to load the packags when saved in this vay - instead you
should use the relevant operating systeam load command and then
executes a cold start into the editor as given in your Implementation
Nots. ZX SPECTRUM users should consult ths note '‘Making Working Copies.’'.

All purchasers of previous versions of .Hisaft Pascal & will be sent
Version 1°4 free of charge.

ners of HPAT under NAS-SYS and the ZX SPECTRUM will
h is identical to Version 1,4 except that bug 3

To avoid this bug you should aluays esnsure that the
Ln?agc: comparison appsars on the left of the

for technical reasons OV
be sent Version 1.3 whic
above is not corrected.

rsal expression in & real=-to-

comparison.

Hisoft Pascal 4T owners shou
{nstallation Guide are ident

1d note that the HP4T Alteration Guide and
ical documents; availability is January 1983.

ality microcomputer SOFTware e lilgh qga.uty microcomputer SOFTware.....d1gh quality microson
Sroprnietor: D.G. Lank 60 Hallam Moor Ligen SWINDON SN3 &LS.

S AP

- oo wewete o

pRY %

JERYT VR Ay TPt

25 ks wh

PRR R A RN X O

G0 Bmen Poms o b “ig

WISOFY PASCAL IMPLEHENTATION NOTE

-

- Yie o HS

Tacach “Ra zabiette tape from 1Sk ¢ 1* intc vour cassette recoroer wiis v
tmz el o with tne label) uppers On P, . TUIM make sure tha® .ou arn T

ity tiode and then enter:
LOAD ** (press K-and then ° twice)

Mow press PLAY cn the tape‘recorders first the EFéS. lcader -will ve loages, ¢t .. ol
vt Mite automekically arnd protesd to lcad the EPFS code. If a tape error i5 detected thesn
presy the SPACE bar of -the JRECTRUM; stop the tape; rewind.to the start, press NEW -
2o 3 wayvs on the SPECTRUM engthen entar. LOAD ** zapsin. If you stll get a tase isading

qurthlh try adsting the ¥Eludie DR your Gape yEDIET; if errors gz s1st plesse return

the tape T HigoEE and we will reglace it

@ TFO3 003 A Deen 13astT It Wil eXeTSis ¢ et TR Y LU A
s uvd@d - now SonsJlt Sestion G0 ¢f e O =
Yoo.a. . L0 ST st how 1o aroieed. ‘
Implementation on the SPEC .

The X SFECTRUM is a rather unusual computer and, to a certain extent, the implementation
of HPAT reflects this. The various control codes discussed in the Programmer’s Manual are

rem:hed as follows on the SPECTRUM:!

RETURN via the '‘ENTER’ key.

cc via CAPS SHIFT and 1.

CH DELETE i.e. CAPS SHIFT and 0.

CI via CAPS SHIFT and €.

Ccp not available yet.

cX via CAPS SHIFT and 3. .

cs via CAPS SHIFT and SPACE. °

The ZX SPECTRUM keyword entry scheme is not supported (we see this as a positive
advantage), instead all text must be inserted using the normal alphanumeric keys. Using
SYMBOL SEIFT and any key (except I) will always reach the ASCH symbol associated with
that key and not the keyword @.g. SYMBOL SHIFT T gives ' and SYMBOL SHIFT G gives
n’, You must not use the single symbols <=, S and 5= ! instead these should be entered as
a combination of the symbols ¢, > and =,

e T T e A s e

ctadeamal numbers in the lines marked with ‘###¢’ represent memory addresses in Intel format i.e. the
jer byte first, The addresses given are for a standard 48X IX SPECTRUM. However, if you have -
RUM with less memory or you have specfied a particular symbol table size in response to the Tabl: »
initial prompt, then you will have to change these addresses. To do this use the ‘X’ command to fina
? address of the end of the compiler, then subtract LATEE (decimal 42990) from this and add the result
n address. If the end of the compiler is less than LA7EE then subtract the address of the end of the
er from LA7EE and subtract this result from each address. For example, say the ‘X' command returns
lue £B100; subtract LA7EE from this to get £0912 and now add this to all the addresses in the marked
for instance take the first marked line - the address represented here is {7A20, add L0912 to get
and replace the line with ‘INLINE(£32,£83)}'. Normally, of course, you can use the addresses given.

_7ou have entered this program, stored it on tape and executed it, you can use the ‘P’ compiler option at
le time or CER(16) at run time.

nber that each time you load up the compiler you must run the above program before using the printer.
/ is an example program using the ZX printer:

s £This will list the program to the printer>

;3RAM PRINTEREXAMPLE;

3IN
RITELN(’This goes to the SFPFECTRUM screen.’);

‘RITELN(CHR(16),°’This Qoes to the ZX printer.’);
RITELN(CHR(14),’This goes orice more to the SPECTRUM screen’)

- D
apologise for any inconvenience caused by the absence of the P oﬁtian in HP4S Version 1.3 and thus the
pssity to work through the above. The ‘P compiler option will be fully supported in Version 1.4,

'ou have any queries concerning this Software Release Note then please do not hesitate to contact us.

TE: Once you have interfaced the printer in the above way you will not be able to
use CHR(16) within a WRITE(LN) to specify the INK colour - instsad you must

use CHR(1S) to set the INK colour.

|

1

HS

O

ama¢ uUp In upper case mode, this may be toggled :n the normal way using CAPS

“he ed:itor
SHIFT anc

ey

You have control over the temporary attributee of the various character positions on the
screen through the use of the standard control codes (e.ge WRITEICHR(17),CHR(4)) will make
the ‘paper’ green) but you cannot change the permanent attributes. If, while using these
contral codes, &n invalid sequence is.detected then the message ‘System Call error’ will be
. displayed and the execution aborted. When you domp out text or object code to tape the
message ‘Start tape, then press any key’ will be displayed twice = you must respond to it
each time.

There is no need to save the loader since an automatic loader is always dumped with the
object program - if you have used the ‘T‘ranslate command to save the object code and
runtimes on tape then to load and run the program simply enter 1TOAD ** from within
BASIC. After the execustion of the object code has finished you can run it again, assuming it
has not corrupted anything, by entering ‘GOTO &’ from within BASIC.

If you use the ‘B’ command from within the EP4T editor to return to the ZX SPECTRUM
BASIC then, assuming you do qiot change the BASIC program, you can re-enter the HPAT
editor in one of two ways: enter ‘GOTO 9’ to perform a warm start i.e. preserving the Pascal
program or ‘GOTO 12‘ to do a cold start, re-initialising the Pascal and clearing any existing

Pascal text.

Flease do not hesitate to contact us if you experience any difficulty with Hisoft Pascal 4 -
we can only solve the problems if we know what they are!

Mote: The start address of the package is £6016 (hexadecimal) = 24598,

[V

HS

Th

P S o

Date:

Tour ref.
eu(0793)”bolb ’ Qur ref:

& - VLRSIO

Y-
i

[[F-3

release numbaer of Hisoft Pascal 40 and Hisoft Pascal 47T is now 1-4
fective from 3% Octoser 1GE2. :

The differences tet-een Version -1 anc Version 1-4 are given belou:

A bug in the evaliuastion 0f expressions (which led to exDdressions lixke
1+5QR(2) ‘el ng incorrectly evaluated, has been corrected,

A bug in the svaluaticn of expressions (which lad to expressions lixe
I1+(1+1) being incorrectly evaluated) has been correctsd.

k bug that caused tre i :rrect evaiuation of the re-ult o an intecer
to real comparison -

NCG
~as Ceen correctec,

Hisoft Pascal 47 only: the documented bug in the editor 'S sub~-commenc
(see page 36 of %the Frogre-wer's Manual) has been corrected - 'St can
now be usec at any tire,)

F.sCcft Pascel 47 only: using the 'F!' commang from within the editor
W finc a ctharaecter sifing Now positions the edgiting cursor at the
beginninc of any founc occurrence of the string cf pages 37 anc 3¢
cf the Frogrammer's Manual,

Hisoft Pascal 47 onily: a neu editor command has been incofboratau. The
'X' cammand displays, in hexadecimal, the current end addre:s of the -
compiler. This allous the user tJ make a working copy of the compiler
pacikage and thus minimises the danger of corrupting the mastar tape,
To do this, find the start address of the package from your
Impiementation Mote and the enc address of the package using the 'Xx'
command. Now use the relsvant cperating system command to dump this
block of memory w0 tape. hote that you will not be able to use tho
HP4T loader toc lcac the package whan saved in this wvay - instead you
shoulc use the relevant ocerating sysisem load command ang then
execute a colc start in the editor as given in your implementation
ote. ZX SPECTRUY Lsers s~ouloc consult their Implementation Note for

detalss of making & wor«ing copy.

SECTION O

SECTION

SECTION

Te1
162
13
144
15
1.6
17
10761
16702
1e7.8
1.8
1.9
111
112
113
1616
1615
1616
117

2

261

2.2

2.3
2.361
2:36701
2.3.1.2
2,3.1.3
2.3.1.4
2.341.5
2:3.2

p 0 0y B

2.3.2.2

CONTENTS

PRELIMINARIES

Getting Started

Scope of this Manual
Compiling and Running
Strong TYPEing

SYNTAX and SEMANTICS

IDENTIFIER
UNSIGNED INTEGER
UNSIG&ED NUMBER
UNSIGNED CONSTANT
CONSTANT

SIMPLE TJYPE

TYPE

ARRAYs and SETs
PBINTERS

RECORDs

FIELD LIST

VARIABLE

TERM

SIMPLE EXPRESSION -
EXPRESSION
PARAMETER LIST
STATEMERNT

BLOCK

PROGRAM

PREDEFINED IDENTIFIERS

CONSTANTS
TYPES
PROCEDURES and FUNCTIONS

Input and Output Procedures

WRITE

WRITELN

PASCE

RERD

READLN

Irput Functions
ECLN

INCH

5 LN -

w

= .
O O W v o ® =~ 3 OO0 »nn n v

-3

PR ¥
~ 0~

-t
-3

Wl e¥
~

20
20
21
22
22
22

2.3:3 Transfar functions _ 22

2.3.3.1 TRUNC(x) 22
2:3:3.2 . ROUND(X) 23
ZeBsTe3 4 ENTIER(X) 23
2.3.3.4 - 0RD(X) 23
24335 CHR() 23
2,3.4 Arithmetic Functions . : 24
253t ABS(X) 24
2o ele? SQR(X) : 24
2:3.4.3 . SQRT(Xx) ‘ 24
2,3.4.4 FRAC(x). ~ 24
2,3.4.5 - SIN(X) 24
2.3.4.6 cos(x) ' ' 24
26347 TAN(X) 24
2.3,4.8 ARCTAN(X)) 25
2,3.4,9 - EXP(X) 25
2.3.4.10 LN X) 25
2:3.5 Furthesr Predefined Proceduress 25
2 e3u 5 NEW(p) ‘ ‘ 25
2edn5.2 MARK(v1) 25
2.3.5,3 RELEASE(v1) 25/2%
) 2.3.5.4 IMUINE(C1,C2,C3,00000000e) 26
2.3.5.45 user(v) - 26
© 2434546 HALT 26
243.5.7 POKE(X, V) {1
2.3.5.8 TOUT (NAME,START,SIZE) 27
2.3.5.9 TIN (NAME,START) g : : V]
2.3.5.10 ouT(P,C) RN
2.3.6 Further Predafinaed Functions] . 2
2.3.5.1 RANDGM 23
2.3.5642 succ(x) g
243uB03 PRED(X) : ‘ 28
2.3.6.4 G30(X) | | 28
2.3.6.6 ADOR(V) 28
2:3.647 PEEK(X,T) 28
stze(v) 23
2.3.6.8 1n(p) ' 29
SECTION 3 COMMENTS and COMPILER OPTIONS 31
301 Commants 31

362 Compiler Qptians

(-
—n

SECTION 4 THE INTEGRAL EDITOR 35

4,1 Introduction to the Editor 35
Y 4.7 . The Editor Commands 36
4,241 Text Insertion 36
62,2 Text Listing ' | 36
4,2,3. Text Editing 37
4.2.4 Tape Commands - 39
4,2,5 Compiling and Running from the Editor 39
4,266 * Other Commands ' 40
4.3 An Exampie of the Use of the Editor 41
APPENDIX 1 ERRORS 43
Relot Error numbers generated by the compiler 43
Roel.2 Runtima Error Messages 44
APPENDIX 2 RESERVED WORDS and PREDEFINED IDENTIFIERS 45
Ra2el ' Reserved Words 45
Ae2ed Special Symbols . 4s
ReZe3 ’ Predefined Identifiers ' 45
APPENDIX 3 DATA REPRESENTATION and STORAGE ; 47
£e3ec1 Data Representation . 47
Fe3s1at Integers 47
Be3ele2 Characters,Booleans and other Scalars 47
ReJet.3 Reals 47
Felstleb Records and Arrays ' - 49
fe3.1e5 Sets e ag .
R.3.1.6 Pointers . 49
R.3.2 Variable Storage at Runtime 52
APPENDIX & SOME EXAMPLE MP4T PROGRAMS 53
BIBLIOGRAPHY) 57
f 3 [.
(FOTO = (N A axt S TRy) [tewvas = ENTER
oA { o, . CE. T One o
UL { Loy e) A swier 34
\‘ (< Bt ' = f.l!*;i.g SM’*‘-‘?’ e ;;\ (1}‘:‘{4?8)
;o = (A2 Svux 4 R
[b AR ¢
% AR IRT . 30k e,
5' (l) = /‘/37 A G “—4-\55(.(‘:

s ——

SECTION 0 PRELIMINARIES,

0.0 Getting Started, d

Hisoft Pascal 4T (HP4T) is a fast, easy-to-use and powerful version of the Pascal language as
specified in the Pascal User Manual and Report (Jensen/Wirth Second Edition), Omissions from this
specification are as follows!

FILEs are not implemented although variables may be stored on tape.

A RECORD type may not have a VARIANT part.

PROCEDUREs and FUNCTIONSs are not valid as parameters.

Many extra functions and procedures are_inhciuded to refiect the changing environment in which
compiiers are used; among these are POKE, PEEK, TIN, TOUT and ADDR,

The compiler occupies approximately 12K of storage while the runtimes take up roughly 4K. Bots
are supplied on cassette tape in the tape format used by the runtimes. All interfadng betwee-
HPA4T and the host machine takes piace through vectors conveniently placed at the start of the
runtimes (see HP4T Alteration Guide) - this makes it easy for the user te write his cwn customisec
1/0 routines if necessary.

Hisoft Pascal 47 uses various control codes, mostly within the editor, Of course, different systems
can have very different keyboard designs and thus wil Fave different ways of reaching contrc:
codes. In this manual the control characters used will be referred to as RETURN, CC, CH, CI, CF,
CS aro CX. The attacred Impiementatior Note will tell you the corresponding keys for your system.

Wherever HP4T 1= waiting 7or a line of input, the control characters can be used as follows!

RETURN is veed tc termirate the line. (=~teed)

GC returrs to the editor. (cae smea 1)

CH deietes the last character typed, (cas sirra »)

Ci move to the next TAE position. (AP ST « &) ~

cr cirects output to the printer (if available) or if outputj NOT QA lLABLE TLR SPecy sy
was going to the printer then it returns tc the screen, |

Cx deletes the whole line typed so far, (<42 stBre5) g -

T PALERE YHE Lisnal(i LAE SHITT ¢ STace)

h simgie icader is aiso supplied in the package so that the user can load, from tape, data which ras
Leen recorded in HP4T format,

“hus, tc load the compiler and runtimes from the master tape supplied by Hisoft, the user must
first load the loader - when applicable this is supplied in a form suitable for loading by the user’s
coerating system. If the user is unable to access the tomputer’s operating system then the boot
icader must be entered into the computer’s memory directly either through the use of an assembier
5v & high level language such as BASIC - details of how to do this and a skeleta) lpader appear ir
the EP4T Instaliation Guide.

Once the icader has been executed it will proceed to search for a file recorded in HP4T taps
format. When & file of this format has been found the loader will load the file into memory. If at
any stage ar. errov is detected while reading the tape a message will be displayed - you must ther
vewird the tape to the beginning of the file and attempt to load it again. If you experience
repeated 2rrors ther adjust the volume level on your tape recorder - if this is not successful the-
piease return the tape to Hisoft and we will send you a replacement tape,

Thus the loader will automatically load the compiler and runtimes into memory for you.

-

When the compiler has been successf-‘uny loaded it will execute automatically and praduce the
message!

Top of RAM?

You should respond to this by either entering a positive decimal number up to 655356 (followed by
RETURN) or by hitting RETURN (See Implementation Note).

If you enter a number then this is taken to represent the highest RAM location + 1 otherwise the
First non-RAM location is automatically computed. The compiler’s stack is set to this value and
thus you can reserve high memory locations (perhaps for extensions to the compiler) by deliberately

giving a value less than the true top of RAM. In the ZX Spectrum version the ‘true’ top of RAM is
taxen to be the start of the user-defined graphics area (UDG in the Sinclair manual).

YTou will then be prompted withs
: Top of RAM for ‘T’

Here you can enter a decimal number or default to the ‘Top of RAM’ value previously spedified.
What you enter will be taken as the stack when the resultant object conde is executed after using
the editor ‘T’ command (See Section 4 for details). You will need to define a runtime stack different

from'the top of RAM if, for example, you have written extensions to the runtimes and wish to place
them safely in high memory locations.

Finally you will be asked:
Table size?

What you enter here specifies the amount of memary to be allocated ta the compiler’s symbol table.

Again, either enter a positive decimal number followed by RETURN or simply RETURN by itself in
which case a default value of (available RAM divided by 14) will be taken as the symbol table size.
In nearly all cases the default value provides more than enough space for symbols, The symoc!
table may not extend abave machine address £8000% (32768 decimal). If you specify so large a valce
that that this happens then you will be prompted again for 'Top of RAM’ etc.

You .;nay. optionally, include an ‘E’ before the number after this prompt - if you do so then the
internal line editor will not be retained for use by the compiler. So do this if you wish to use your
own editor with the compiler (see the HPAT Al teration Guide for details on how to do this),

At this point the compiler and integral editor (if retained) will be relocated at the end of the
symbol table and execution transferred to the supported editaor.

*Note: throughout this Manual, the pound sign "L" is replaced by the number sign or hash (decimal
3%, hexadecdmal 23, shift ‘3’) on all systems which do not use U.K. ASCII. Numbers that are
precesded by this symbol are in hexadeamal.

01 Scope of this manual,

This manual is not intended to teach you Pascal; you are referred to the excellent books given in
the Bibliography if you are a newcomer to programming in Pascal.

This manual is a reference document, detailing the particular features of Hisoft Pascal 4,
Section { gives the syntax and the semantics expected by the compiler,

Section 2 details the various predefined identifiers that are available within Hisoft Pascal 4, from
CONSTants to FUNCTIONSs,

Section 3 contains information on the various compiler options availabie and aiso cn the forrma+ o<
comments.

use this editor but want to interface your own editor, then you should consult the HP4T Alte*atz::
Guide.

Section 4 shows how to.use the lire editar which 15 an integral part of HPAT, if you do not w:s™ -

The above Sections should be read carefully by all users,
Appendix 1 details the error messages generated both by the compiler and the runtimes.
Appendix 2 lists the predefined identifiers and reserved words.,

Appendix 3 gives details on the internal representation of data within Hisoft Pascal 4 - useful for
programmers who wish to get their hands dirty, '

Appendix 4 gives some example Pascal programs - study this if You experience any problems ir
writing Hisoft Pascal 4 programs.

().Z‘éompilinq and Running.

For details of how toc create, amend, compile 'and run an HP4T program using the integral line editz-
see Section 4 of this manual. For information on what to do if you are using your own editor see the
HPAT Alteration Guide.

Once it has been invoked the compiler generates a listing of the form!

xxxx nnnn text of source line

where. xxxx is the addrese where the code ge:.werated by this line begins.
nnnn is the line number with leading zerces suppressed.
iIf a line contains more than 80 characters then the compiler inserts new-line
characters so that the iength of a line is never more than 80 characters,
- 5
The listing may be directed tc a printer, if required, by the use of option P if 5upportéd (see
Section 3), ‘ . .

You may pause the listing at any stage by pressing CS;} subsequentl.y use CC to return to the editor
or any other key to restart the listing.

If an error is detected during the compilation then the message ‘*ERROR#*’ will be displayec.
followec by an up-arrow ("*"), which points after the symbol which generated the errar, and an erro-
number (see Appendix 1), The listing will pause; hit ‘E’ to return to the editor to edit the line

displayed, ‘P’ to return to the editor anc edit the previous line (if it exists) or any other key to
continue the compilation,

(48]

If the program termindtes incarrectly (e.g. without "END.’) then the message ‘No more text’ will be
displayed and control returned to the editor.

If the compiler runs out of table space then the message "No Table Space’ will be displayed and
control returned to the editors Normally the programmer will then save the program an tape,
re-load the compiler and specify a larger 'Table size’ (see Section 0.0).

1f the compilation terminates correctly but contained ervors then the number of errors detected
will be displayed and the object code deleted. If the compilation is successful then the message
‘Run?’ will be displayed; if you desire an immediate vun of the program then respond with 'Y,
otherwise control will be returned to the editor.

During a run of the object code various runtime error messages may be generated (see Appendix 1).

Ysu ‘may suspend a run by using CS subsequently use CC to abort the run or any other key tc
resume the run,

0.3 Stronq TYPEinq.

Different languages have different ways of ensuring that the user does not use an element of data
in 3 manner which is incaonsistent with its definition,

At one end of the scale there is machine code where na checks whatever are made on the TYPE of
variable heing referenced, Next we have a language like the Byte 'Tiny Pascal’ in which character,
:nteger and Boolean data may be freely mixed without generating errors. Further up the scale
comes BASIC which distinguishes between numbers and strings and, sometimes, between integers
and reals (perhaps using the '%’ sign to denote.integers). Then comes Pascal which goes as far as
allewing distinct user-enumerated types. At the top of the scale (at present) is a language like
ADA 10 which ane can define different, incompatible numeric types.

There are basically two approaches used by Pascal implementations to strength of typing
structural equivalence or name equivalence, Hisoft Pascal 4 uses name equivalence for RECORDs
and ARRAYs. The consequences of this are clarified in Section 1 - let it suffice to give an example
here; say two variables are defined as follows: . .
VAR A ARRAYC('A’.,'C’) OF INTEGER] g .
B! ARRAY['A’,,'C') OF INTEGER; :

then one might be tempted to think that one could write A!=B; but this would generate an error
(*ERROR# 10} under Hisoft Pascal 4 since two separate ‘TYPE records’ have been created by the
above definitions. In other words, the user has not taken the decision that A and B should
represent the same type of data. She/He could do this by!

VAR A,B ! ARRAY("A’./C’'] OF INTEGER)

and now the user can freely assign A to B and vice versa since only one ‘TYPE record’ has been
created,

Althaugh an the surface this name equivalence approach may seem a little complicated, in general it
leads to fewer pragramming errors since it requires more initial thought from the programmer.

- {.‘-”§’7>. v o - . P O s YT A, T~ P B b <=y

»

SECTION'I SYNTAX AND SEMANTIZS.

This section details the syntax and tre sem
impiementation is as spedfied
(Fensen/Wirth),

antics of Hisoft Pascal 4

= unless otherwise stated the
1n the Pascal User Manuyal

and Report Second Edition

i, IDENTIFIER,

AV

Y.
Cone D

identifier are treated ag significant,

Only the first 10 characters of an

Identifiers may contain lower or upper case letters, Lower case is not converted to Upper case gp
that the identifiers HELLO, HELIo and hello are all different. Reserved words and predefined
identifiers may only be entered in upper case,

i:2 UNSIGNED INTEGER.

| Ny |

’Oc) {“

*'%r)! unsigned integer . digit E ' unsigned integerJ e 3 =3
| S —
‘ | {

| S

|

!]
\,-M)/D__‘x___s,

Integers nave an absolute v
numbers are treated as reals,

alue less than or equal to 32747 In Hisoft Pascal 4, Larger whole
The mantissa of reals is 23 bits in iength. The a

Cturacy attained ys
Significant figures., Note that accuracy is lost

ing reals is therefore about 7
if the resuit of a cal

cuiation is much less than the

absolute values of its arguments e.g. 2.00002 - 2 does not yield 0.00002. This is due to the
inaccuracy involved in representing decimal fractions as binary fractions. It does nat occur when
integers of moderate size are represented as reals e.gs 200002 - 200000 = 2 exactly.

The largest real available is 3.4E38 while the smallest is S.9E-39,

There is no point in using maore than 7 digits in the mantissa when specifying reals since extra
digits are ignored except for their place value.

When accuracy is important avaoid leading zerces since these count as one of the digits. Thus
0.0001234%6 is represented less accurately than 1,23456E-4,

Hexadecimal numbers are available for programmers to specify memory addresses far assembly

language linkage inter alia. Note that there must be at least one hexadecimal digit present after '

the ‘£’ otherwise an error (#ERROR#* S1) will be generated,

1,4 YNSTGNED CONSTANT.

constant identifier

\ 4

R

)(unsigned numbher

o)

w0

Note that strings may not contain more than 255 characters. String types are ARRAY [1.N] QF
CHAR where N is an integer between 1 and 255 inclusive. Literal stringg should-nat contain
end-cf-line characters (CHR(13)) ~ if they do then an "¢ERROR#* 48’ is generated.)

T

;

The characters available are the full expanded sat of ASCII values with 256 elements, To maintain '

compatibility with Standard Pascal the null character 1s not represented as ** | instead CHR!O)
should be usad.

B e Y e s . AP R o TS SR T AT PN ST v S e S SIS S Y W e ST TS T g s s

1,9 CONSTANT.

1 constant igentifier ——

—a%——) unsigned number —

oJfe

i 1
l;—u—éK’/.}—‘i’—) character
| ‘

xhe non-standard CHR construct is provided here so that canstants
may be used for control characters. In this case the constant
in parentheses must be of type integer.

E.g. CONST bs=CHR(10)}
cr=CHR(13);

i.& SIMPLE TYPE,

‘ }i type identifier

v

s ;

; (identifier @——7 '
: | R |

|

|

! .

: —_———e '
—> ronstant ~———-§Q~)I constant
— |

Scalar enumeratec types (identifier, identifier, i) may not have more than 256 elements,

1.7 TYPE.

T -ttt oo A simple t);pe‘}—————~—~ e e g 2 e X2 e

. | |
i |

! , —

FEe e e >l type icentifier

S ;
.
i

—~/PACKED) i
N A

: re——
ARRAY simple type —{ 1 OF, type >
& D —— . .

Cx—

-%/SET\‘ ‘/O_If\ simple type f—————3
) ¥ oF) > simole type | _

i

i
i
RECORD " field list r;———i@ A

The reserved word PACKED is accepted but ignored since packing already takes place for a}rays of
characters etc. The only case in which the packing of arrays. would be advantageous is with an array
of Booleans - but this is more naturally expressed as a set when packing is required..

e

-

{.7,1 ARRAYs ard SETs.

The base type of a set may have up to 256 elements. This enahles SETs of CHAR to be derlared
together with SETs of any user enumerated type. Nate, however, that only subranges of integers
can be used as base types. All subsets of integers are treated as sets of 0..25S.

Full arrays of arrays, arrays of sets, records of sets etc, are supported.

Two ARRAY types are only treated as equivalent if their definiticn stems from the same use of the
resarved word ARRAY., Thus the following types are not equivalent:

TYPE
tablea = ARRAY(1.,100] OF INTEGER;
tableb = ARRAY(1..100] OF INTEGER;

2o a variable of type tablea may not be assigned to a variable of type tableb. This enables
mistakas to be detected such as assigning twa tables representing different data., The above
restriction does not hold for the special case of arrays of a string type, since arrays of this tyne
are always used to represent similar data,

©w

1.7.2 Fointers,

»

Hisoft Pascal 4 allows the creation of dynamic variables through the use of the Standard Procec. -

NEW (see Section 2). A dynamic variable, unlike a static variable which has memory space allocat:=:
. for it throughout the block in which it is declared, cannot be referenced directly through =-

identifier since it does not have an identifier; instead a pointer variable is used. This poimsE®
variable, which is a static variabie, contains the address of the dynamic variable and the dynar::
variable itcelf is arcessed by induding a '’ after the pointer variable, Examples of the use -
pointer types can be studied in Appendix 4 . :

There are some restrictions on the use QF pointers within Hisoft Pascal 4, These are as follows:

Pointers to types that have not been declared are not allowed. This does not prevent t-=
construction of linked list structures since type definitions may contain pointers to themselve:
€.3.

TYPE
item = RECORD
’ value : INTEGER;
next | ~item
END;

link = ~item)

Pointers to pointers are not allowed.

Pointers to the same type are regarded as equivalent e.g,

VAR -
first ¢ link;
current | “item;

The varniables first and current are equivalent (i.e. structural equivalence is used) anc

Ty b
assigned to each other or compared. .

°

“he precefined constant NIL is supportes and when this is assigned to a pointer variable then the
pointer variable is deemed to contain no address,

i.7.4 RECORDs,

The implementation of RECORDs, structured variables composed of a fixed number of corstity
calied fields, within Hisoft Pascal 4 is as Standard Pascal except that the variant part of th
iist is pot supported.

ents

e fielc

Two RECORD types are only treated as equivalent if their declaration stems from the same
ocaurrence of the reserved word RECORD see Section 1,7.1 ahove,

The WITH statement may be used to acce:zs the different fields within a record in'a more compact
form

See Appendix fp.for an example of the use of WITH and RECORDs in general,

g AT e L 3

1,8 FIELD LIST.

; o

|
o

v identifier ‘@* type

T >

Used in éonjuncticn with RECORDs see Section 1.,7.4 above and Appendix 4 for an example.

1.9 VARTARLE,

'r—‘;Lvariable identifier ¢ —_— s

\

f)
field identifier

l

t———@—a field identifier st

!
1 . s 5

T'we kinds of variables are supported within Hisoft Pascal 4
variables are explicitly declared through VAR and memory is
execution of the block in which they were declared.

static and dynamic variables. Static
allocated for them during the entire

Dynamic variables, however, are created dynamically during program exeaustion by the procedure NEW. They
are not declared explicitly and cannot be referenced by an identifier. They are referenced indirectly by a
static variable of type pointer, which contains the address of the dynamic variable.

See Secticn 1.7.2 and Section 2 for more details of the use of dynamic variables and Appendix 4 for an
example, : '

Wnen specifying elements of multi-dimensional arrays the programmer is not forced to use the same form
‘of 1ndex spedification in the reference as was usad in the declaration - this is a change from Hisoft Pascal
3

eg. if variable a is declared as ARRAY(1..10] OF ARRAYI(!Y

»101 OF INTEGER then either al131[11
or ali,l] may be used to access element (1,1) of the array, '

10

S AT W g e (SR LY K PPPRRs . {B B B B AT N ¢y B S S fpte PR e, AR, VPP

RS- o L

FACTOR,

v

 unsigned constant

-~

|
,‘
;L > variatle
!
¥ U e oy
- : M
: 2. function menhﬁer*—-—-@——r-‘ expression | w
: i
? —O—
g
b L 3 ‘
@ > expression | @ =

i
ed @ 5| factor }

%\)—“—5 expressmn%—)Q—% expression *——;“TO———a

B e |

See EXPRESSION in Section 1.12 and FUNCTIONs in Section 3 for more details.

1.1 TERM,
—ﬁfa—tur T > »
L

factosr

The lowerbound of a set is always zero and the set size is always the maximum of the base type of the set.
Thus a SET OF CHAR always occupies 3Z bytes (a possible 256 elements - one bit for each element).
Similarly a SET OF 0..10 is equivalent to SET OF 0..255.

&

isig SIMPLE EXPRESSION,

[: ZtEYm‘f‘ 7N i , r
i T et

11

The same comments-made in Section 1.11 concerning sets apply to simple expressions,

]

?

112 EXPRESSION.

S s sgresion -— g

b Lsimple expression

When using IN, the set attributes are the full range of the type of the simple expression with the
exception of integer arguments for which the attributes are taken as if £0.:255] bhad been
encauntered.

The above syntax applies when comparing strings of the same length, pointers and all scalar types.
Sets may be campared using >=, <=, <> or =, Pointers may only be compared using = and <>,

1,14 PARAMETER LIST. .

| enamntaet i R S e e e e = ¢ emcee - -

| -
*@,T)Wtype identiFier—h-O— e

A tyoe identifier must be used following the colon - otherwise *ERROR# 44 will result,
Variable parameters as well as valye parameters are fully supported, ’

Procedures and functions are not valid as parameters,

113 STATEMENT.

Refer to the syntax diagram on page 14,

Assignment statements)

(431

22 Zection 1.7 for information on which assignment statements are illegal..

CASE statements:

An entirely null case list is not allowed i.a. CASE OF END; will generate an error (#ERRCR#» {3),

The ELSE Ciause, whithis ar aiter-ative to END, 15 executed 1f the seiector 'expression’ over.eaf)
1s not found in one of the case lists (‘constant’ ocverieaf).

If the ENTD terminator is used and the selector is not found then control is passed to the statement
following the END.

?

»

FOR statements:

The control variable of a FOR statement may only be an unstructured variable, not a parameter.
This is half way between the Jensen/Wirth and draft ISO standard definitions.

GOTO statements:

It is only possible to GOTO a label which is present in the same block as the GOTO statement and
at the same level, '

Labels must be declared (using the Reserved Word LABEL) in the block in which they are used; a
label consists of at least one and up to four digits. When a label is used to mark a statement it
must appear at the beginning of the statement and be followed by a colon - *¢,

.
"

i3

STATEMENT,
—75—{ unsigned integer r—@-j
¥3 variable identifier———3{= expression |

i =3 function identifier

. [

Vi

:........._7,\' procedure identi{-’ierj.—-—lf\c‘—q expression }"'_)@_—"—‘—)ﬂ

S

——>{EEon)———{etatement (@0)

s O

. . , : : |
*—@-) expression —X THEN *—é{ statement ELSE statement—2

i r
e i [\
: CASE > expression > OF xr) constant statement @

i , ¢

| =(eLse)tatement——
] ' .

| .

B

: WHILE expression DO statement

ef -

‘;'—3/ REPEAT :—‘J! statement i‘ ‘ ‘
i \-—/

i —{—
|

i‘@'ydariable identifierr—>

expression [7

N

DOWNTQ

D

L‘} expression l——> DO -

'“)@ variable 71> DO statement |

: e ()e—

[>gota _unsigned integer [~

14

WMWY T L L L4t ey T e TR N TR B g £ e B3 8 AT v WAL P PR S @ ¢ RIS MraP p

1.16 BLOCK.

/"\V
! LABEL %unsigned integerj—‘
J
e ey -
——> CONST identifier > constant
| SN O
L, m
T L/~
| |
L—-‘;/TY—FE\, identifier = type
? 5 S %
— o3
‘ identirFier — > type
(X
T\,
LK
K — block e ;
;' "PPROCEDURE——> identifier > parameter list }

)

~SFUNCTION id

entifier —2> parameter list

(

i
!

+

)

L-—2 BEGIN

¢

N

B2

statement T@

type identifier

i5

\'4

Lt
2

Forward References.,

As in the Pascal User Manual and Report iSection 11.C.1) procedures and functions may be
referenced before they declared through use of the Reserved Word FORWARD =N

PRCCEDURE alyit) } FORWARD) {procedure a declared to be)
PRCCEDURE b(x:t)} 3 (farward of this'statement?
HEGIN

alph; . (procedure a referenced.)

END;
PROCEDURE a} Cactual declaration of procedure a.}
BEGIN

olqd
END}

Note that the parameters and result type of the procedure a are declared along with FORWARD

and are not repeated-in the main declaration of the procedure. Remember, FORWARD is a Reserved
Wards '

1,17 PROGRAM,

@
PRCGRAM

Since files are not implemented there are no formal parameters of the program,

4

[

16

e

SE‘_:TION 2 _PREDEFINED IDENTIFIERS.

2.1 CONSTANTS.

/

MAXINT The largest integer available ie. 32767,

TRUE, FALSE The constants of type Boolean,

2.2 TYPES.

INTEGER See Section 1.3,

REAL See Section 1.3,

CHAR The full extended ASCII character set of 254 elements,
BOOLEAN (TRUE,FALSE), This type is used in logical operations incduding

the results of comparisons,

2,3 PROCEDURES AND FUNCTIONS. -

2:3,1 Input and Output Procedures,

23,11 WRITE

“h

The procedure WRITE is used to output data to the screen or printer,

When the expression to be written is simply of type character then WRITE(e)
passes the 8 bit value represented by the value of the expression e to the

“» 4 sCreen or printer as apprapriate,
- Note:
i " CER'8) (CTRL H)gives a destructive backspace on the screen,

CHR(i2) (CTRL L) clears the Streen or gives a new page an the printer,
CHR(13) (CTRL M) performs a carriage return and line feed,

< CHR(16) (CTRL P) will normally direct output to the printer if the screen
" o is in use or vice versa,

17

el

5
®

Generally though!
WRITE(PI,P’Z,""“.PH); is EqUiVﬁlEnt tot
BEGIN WRITE(P1)} WRITE(P2)} viveenre} WRITE(Pn) END!

The write parameters P1,P2,......Pn can have one of the following forms!
<ed>.or <e!m> or <eimin> or <eimiH>

where e, m and n are expressions and H is a literal constant,
We have S cases to examine!
1] e is of type integer! and either <e> or <{e!m> is used,

The value of the integer expression e is converted to a character string with
a trailing space. The length of the string can be increased (with leading
spaces) by the use of m which specifies the total number of characters to be
oytput, If m is not sufficient for e to be written or m is not present then
e is written out in full, with a trailing space, and m is ignored. Note that, if
m is specified to be the length of e without the trailing space then ng
trailing space will be output, 5

2] e is of type integer and the form <e!miHD is used.

In . this case e is output in hexadecimal. If m=1 or m=2 then the value (e
MOD 16”m) is output in a width of exactly m characters, If m=3 or m=4
then the full value of & is output in hexadedmal in a width af 4 characters.
If m>4 then leading spaces are inserted befare the full hexadedmal value of
e as nerassary. Leading zeroes will be inserted where applicable. Examples:

I3

WRITE(10ZS!miH); .
outputs: 1

outputs: 01t

outputs: 0401

outputs: 0401

outputs: 0401

33333
wnon W
ARSI

31 e is of type real. The forms <e>, <eim> or <{eimin> may be used.

The value of e is converted to a character string representing a real number.
The format of the representation is determined by n.

18

If n is no{ present then the number

. 1s output in scentific notation; wiinh a
mantissa and an exponent,

If the number is hegative then a minus sign is
Loutput prior to the mantissa, otherwise a space is output. The number is
always output to at least one decimal place up to a maximum of S decimal
places and the exponent is always signed (either with a plus or minus sign).
This means that the minimum width of the sdentific representation is €
“characters; if the field width m is less than 8 then the full width of 12
characters will always be output, If m>=8 then one or more decmal places
will be output up to a maximum of S decimal places (m=12), For m>12 leading
spaces are inserted before the number, Examples:

WRITE(-1.,23E 10im);

m=7 gives: -1.23000E+10
m=8 gives: =1.,2E+10

- m=9 gives! -1.23E+10
m=10 gives! -1,230E+10
m=1{ gives: -1,2300E+10
m=12 gives:! -1.23000E+10
m=13 gives! _-1.23000E+10

If the form <eimin> is used then a fixed-point representation of the numbter
e will be written with n spedfying the number of decimal places to be
output, No leading spaces will be output unless the field width m is

suffidently large. If n is zero then e is output as an integer, If e is too

large to be output in the specified field width then it is output in sdentific
format with a field width of m (see above). Examples:

WRITE(1E2:4!2) gives! 100.00
WRITE(1E2!8:2) gives! 100,00
WRITE(23.45516:1) gives! _23.5 4
WRITE(23.45514:2) gives! 2,34550E+01
WRITE(23.455!4:10) gives! 23

4] e is of type character or type string.

Either (e> or <eim> may be used and the character oy string of characters

will be output in a minimum field width of 1 (for charatters) or the length of

the string (for string types): Leading spaces are inserted if m is sufficently
large.

51 e is of type Boolean,

Either <e’> or <eim> may be used and ‘TRUE’ or ‘FALSE’ will be output
depending on the Boolean value of e , using a minimum field width of 4 or 5
respectively. .

19

7

2:3,1,2 WRITELN

2.3.1.3 PAGE

2:3.1.4 READ

ARITELN outputs gives a newline, This is equivalent to WRITE(CHR(12)),
Note that a linefeed ig included,

WRITELN(Pl.P‘Z,.._.{..'...PG); is equivalent to!

BEGIN ARITE(P1,P2)000000 P3) WRITELN END;

The procedure PAGE is equivalent to WRITE(CHR(12)) and causes the video
screen to be cleared or the printer to advance to the top of a new page,

The pracedure READ is used to access data from the keyb_oard. It does thig
through a tuffer held within the runtimes - this buffer ‘is initially empty
lexcept for an end-of-line marker), We can consider that any accesses to this
uffer take place through a text window aver the buffer through which we can
see one character at a time. If this text windaw is positioned ovér an
end-of-line marker then before the read operation is terminated a new line of
text will be read into the huffer from the keyboard, While reading in this line
all the various control cades detailed in Section 0,0 will be recognised. Now!

READ(V1,Y2,0000Vn0)! is equivalent to!
BEGIN READ(V1) READ(V2)Y viorvennal READ(Vn) END}

where Vi, V2 etc, Mmay be of type character, string, integer or real,

The statement READ(V) has different effects depending an the type of v,
There are 4 cases ta consider!

11 V is of type character,

In this case READ(V) simply reads a character from the input buffer and
assigns it ta V, If the text window on the buffer is positioned on a line

TRUE and a new line of text is read in from the keytoard, When: & read
operation is subsequently perfarmed then the text window will be pasitioned
at the start of the new lins,

Imoertant note: Nota that ZOLN 1s TRUE at the start of the program. This

2,2,1.5 READLN

means that if the first READ is of type character then a CHR(13) value wilj b=
returned followed by the reading in of a new line from the keybcarg! &
subsequent read of type character will return the first character from thi:
new line, assuming it is not blank, See also the procedure READLN below.

21 V is of type string,

A string of characters may be read using’READ and in this case a seriec o
characters will be read until the number of characters defined by the strin:
has been read or EOLN = TRUE, If the string is not filled by the read (i.e. ¢
end-of-line is reached before the whole string has been assigned) then the
end of the string is filled with null (CHRI(0)) characters - this enables the
programmer to evaluate the length of the string that was read,

The note concerning in 13 above also applies here,

21 V is of type integer.

In this case a series of characters which represent an integer as defined ir
Section 1.3 is read. All preceding blanks and end-of-line markers are skippec
(this means that integers may be read immediately cf, the note in 1] above),

If the integer read has an absolute value greater than MAXINT (327¢7) ther
the runtime error ‘Number too large’ will be issued and execution terminated.

If the first character read, after spaces and end-of-line characterg have beer
skipped, is not a gigit or a sign (‘+’ or ‘-1 then the runtime error 'Number
expected’ will be reported and the program aborted,

41 V is of type real.

Here,a series of characters representing a real number according to tre
syntax of Section 1.3 will be read,

N

All ieading spaces and end-of-line markers are skipped and, as for integevz

above, the first character afterwards must be a digit or a sign, If the nurber
read is too large or too small (see Section 1.3) then an ‘Overflow’ error wil;
be reported, if ‘E’ is present without a following sign or digit then ‘Exponent
expected’ error will be generated and if a decimal point is present without a
subsequent digit then a ‘Number expected’ error will be given,

Reals, like integers, may be read immediately; see 1) and 3] above.,

R—EADLN(VI]VZ'QI"OO'VH); 15 equivalent to: BEGIN READ(V‘;V;:,""N;VH);
READLN END; # S

READLN simply reads in a new buffer from the keyboard; while typing in the
buffer you may use the various contro] functions detailed in Section 0,0, Thus

EOLN becomes FALSE after the execution of READLN unless the next line i
blank. o

Z1

-

READLN may be used to skip the blank line which is present at the beginning

; of the execution of the cbject code i.e. it has the effect of reading in a new
buffer. This will be useful if you wish to read a companent of type character
at the beginning of a program but it is not necessary if you are reading an
integer or a real (since end-of-line markers are skipped) ar if you are reading
characters from subsequent lines. :

2.2.2 Input Functions.

2.3.2.1 EOLN

The function EOLN is a Boolean function which returns the value TRUE if the
next char to be read would be an end-of-line character (CHR(13)), Otherwise
the function returns the value FALSE. :

2,3,2,2 INCH

The function INCH causes the keyboard of the computer to be scanned and, if
a key has been pressed, returns the character represented by the key pressed.
If no key has been pressed then CHR(O) is returned. The function therefore
returns a result of type character.

2.3.3 Transfer Functions.

2.3.3.1 TRUNC(X) ' ' i

The parameter X must be of type real or integer and the value returned by
TRUNC is the greatest integer less than or equal to X if X is positive or
the least integer greater than or equal to X if X is negative. Examples!

TRUNC(-1.5) returns -1 TRUNC(1:9) returns {

22

2:3,3:2 ROUND(X)

X must be of type real or integer and the function returns the ‘nearest’
integer to X (according to standard rounding rules), Examples!

ROUND(-6.5) returns =6 ROUND(11.7) returns 12
ROUND(-6.5}) returns -7 RDUND(ZS,S) returns 24

2.3:3:3 ENTIER(X)
X must be of type real or integer - ENTIER returns the greatest integér less
than or equal to X, for all X. Examples!
ENTIER(-4.5) returns -7 ENTIER(11.7) returns 11

Note! ENTIER is not a Standard Pascal function but is the equivalent of
BASIC’s INT. It is useful when writing fast routines for many mathematical
applications.

2:3:3.4 ORD(X)

X may be of any scalar type except real, The value returned is an integer
representing the ordinal number of the value of X within the set defining the
type of X, -

If X is of type integer then ORD(X) = X i this should normally be avoidad,

Examples!

ORD('a’) returns 97 ORDU@") returnd &4 -

2,3:2,5 CHR(X)

X must be of type integer. CHR refurns a charactei value corresponding to the
ASCII value of X. Examples!

CHR(49) returns ’1’ CHR(91) returns 'L’

23

2

4

»

2,3.8 Arithmetic Functions.

In all the functions within this sub-section the parameter X must be of type real or integer,

2+3.4.1 ABS(X)

2.3.,4,2 SQROO)

2.3,4,.3 SGRT(X)

2.3.4.4 FRAC(O)

2.2.4,5 SINOO

2.3.4.6 CCS(X)

23,47 TANOO

~

Returos the absolute value of X (e.g. ABS(-4,5) gives 4.,5), The result is of
the same type as X.

Returns the value X#X i.e. the square of X, The result is of the same type

- as: X

Returns the squar2 rawt of X - the returned value is always of type real, A
‘Maths Call Error’ is 3@nerated if the argument X is negative.

-

Reh')y;ns the fracticnal mart of X! FRAC(X) = X = ENTIER(X).
As with]ENTIER this. Function is useful for writing many fast mathematical

routines. Examples:
FRACOH S returns 0.5 FRAC(-!Z.Sb)'returps 0.44

e

-

~Returns the sineor X where X is in radians, The result is always of type

real,

Returns the cosine o¥ X(where X is in radians. The result is of type real,

Returns the tan: ntof” X where X is in radians. The result is always of
type real,

2:34.8 ARCTAN(X)

2,3.4,9 EXP(X)

2:3.4,10 LN{X)

.

Returns the angle, in radians, whose tangent is equal to the number X, The
result is of type real,

Returns the value e"X where e = 2,71828. The result is always of type real.

-

Returns the natural logarithm (i.e. to the base e) of X. The result is of type
real, If X <=0 then a ‘Maths Call Error’ will be generated.

2:3.5 Further Prede?ingd Procedures.

2.3.5.1 NEW(p)

2.3.5.2 MARK(v1)

The procedure NEW(p) allocates space for a dynamic variable, The variahle p
is a pointer variable and after NEW(p) has been executed p contains the
address of the newly allocated dynamic variable. The type of the dynamic:

variable is the same as the type of the pointer variable P and this can be of
any type, :

To access the dynamic variable p” is used - see Appendix 4 for an exampie of
the use of pointers to reference dynamic variables,

To re-allocate space used for dynamic variables use the procedures MARK and
RELEASE (see belaw)

This procedure saves the state of the dynamic variable heap to be saved in
the pointer variable vi. The state of the heap may be restored to that when

the procedure MARK was executed by using the pracedure RELEASE {see
belowls

The type of variable to which vi points is irrelevant, since vi should dniy he
used with MARK and RELEASE never NEW, ‘~

For an example program using MARK and RELEASE see Appendix 4. e

2,3.5.3, RELEASE(v1)

23

PO s

This procedure frees space on the heap for use of dynamic variables. The
state of the heap is restored to its state when MARKI(v1) was executed - thus
effectively destroying all dynamic variables created since the execution of
the MARK procedure, As such it should be used with great care.

See above and Appendix 4 for more details,

2’30504 INLINE(C 1 'C29C3nuuun)

2,3.5:5 USER(V)

& BALT

"~
o)
n

e

2.3.5.7-POXE(X,W)

© T SRR ST TNy (S e . i g e g P B U s Y

This procedure allows Z80 machine code to be inserted within the Pascal
program; the valpes (C1 MOD 256, C2 MOD 256, C3 MOD 256, seevens) are
inserted in the object program at the current location counter address held by
the compiler. Ci, C2, C3 etc, are integer constants of which there can be any
number. Refer to Appendix 4 for an example of the use of INLINE,

USER is a procedure with one integer argument V. The procedure causes a
call to be made to the memory address given by V. Since Hisoft Pascal 4 holdc
integers in two's complement form (see Appendix 3) then in order to refer to
addresses greater than £7FFF (327¢7) negative values of V must be ucec.
For example £C000 is -16384 and so USER(~14384); would invoke a a call tc

~ the memory address £C000. However, when using a constant to refer to a

memory address, it is mare convenient to use hexadecmal. '

The routine called should finish with a 280 RET instruction (£C9) and must
preserve the IX register,

This procedure causes program execution to stop with the message ‘Halt at
PC=XXXX’ where XXXX is the hexadecimal memory address of the location
where the HALT was issued. Together with a compilation listing, HALT may
be used to determine which of two or more paths through a program are taken.
This will normally be used during de-bugging.

POKE stores the expression V in the computer’s memary starting from the
memory address X. X is of type integer and V can be of any type except
SET. See Section 2.3.5.5 above for a discussion of the use of integers to
represent memory addresses. Examples:

POKE(26000,’A") places £41 at location £46000,
POKE(-16334,3.6E3) places 00 0B 80 70 (in hexadecimal) at location £C000.

26

b]

2,3.3.8 TOUT (NAME,START,SIZE)

- e

s -TOUT is the procedure whieh-is Beed to save variables on tape, The first

; parameter is of type ARRAY[1..83 OF CHAR and is the name of the fiie to be

d : ,saved. SIZE bytes of memory are dumped starting at the address START. Bott
: these parameters are of type INTEGER.

E.g. to save the variable V to tape under the name ‘'VAR * use:
TOUT('VAR / ADDR(V),SIZE(V))

A7 The use of actual memory addresses gives the user far mare flexiblity than
o just the ability to save arrays. For example if a system has a memory mapped
screen, entire screenfuls may be saved directly., See Appendix 4 for an
exarhple of the use of TOUT,

2,3.5:9 TIN (NAME,START)

This-procedure is used to load, from tape, variables etc, that have been saved
. ~ using TOUT, NAME is of type ARRAY[1.8]) of CHAR and START is of type
~ INTEGER.: The tape is searched for a file called NAME which s then loaded at
memory address START. The number of bytes to load is taken from the taoe

(saved on the tape by TOUT). '

E.g« to load the variable saved in the example in Section 2.3.5.8 above use!
TINCVAR "JADDR(V)
Because source files are recorded by the editor using the same format as that

used by TIN and TOUT, TIN may be used to load text files intc ARRAY< of
CHAR for processing (see the HPAT Alteration Guide).

See Appendix 4 for an example of the use of TIN.

2:3.5.10 OUT(P,C)

=

-

This procedure is used to directly access the 280°s output'pnrts without using
the procedure INLINE. The value of the integer parameter P is lcaded in to
the BC register, the character parameter C is loaded in to the A register and
the assembly instruction OUT (C),A is executed,

E.g. OUT(1,’A") outputs the character ‘A’ to the 280 port 1.

27

e

2.3.6 Further Predefined,Functions.

2.3:.4.1 RANDOM

24,2 SUCCIX)

2:3.6.3 PRED(X)

o e

[nad

W4 ODDUX)

2:3.4:6 ADDR(V)

2.3.4.7 PEEK(X,T)

ewmapyse S KO i

B e o T o P

This returns a pseudo-random number between 0 and 255 inclusive. Although

this routine is very fast it gives poor results when used repeatedly within
loops that do not contain 1/0 operations.

1f the user requires better results than this function yields then he/she

should write a routine (either in Pascal or machine code) tailored to the
particular application.

X may be of any scalar type except real and SUCC(X) returns the successor of
X, Examples!

SUCC(A") returns ‘B’ SUCC('S") returns ‘&’

X may be of any scalar type except real} the result of the function is the
predecessor of X, Examples! -

PRED('}") returns ‘i’ PRED(TRUE) f'eturns FALSE

7

X must be of type integer. ODD returns a Boolean result which is TRUE if X
is odd and FALSE if X is even.

This function takes a variable identifier of any type as a parameter and
returns an integer result which is the memory address of the variable
identifier V. For information on how variables are held, at runtime, within

Hisoft Pascal 4 see Appendix 3. For an example of the use of ADDR see
Appendix 4, o £ LIt P

The first parameter of this function is of type integer and is used to spedfy
a memory address (see Section 2,3.5.3), The second argument is a type; this is

28

SN PR,

the result type of the function,

PEEK is used to retrieve data from the memory of the computer and the result
, may be of any type,

In all PEEK and POKE (the opposite of PEEK) operations data is movec 1r
Hisoft Pascal 4's own internal representation detailed in Appendix 3. For

exampie: if the memary from £5000 onwards contains the values! S0 6] 73 &3
61 6C (in hexadecimal) then!

WRITE(PEEK(£5000,ARRAY(1..6] OF CHAR)) gives ‘Pascal’
WRITE(PEEK(£5000,CHAR)) gives P’
WRITE(PEEK(£5000,INTEGER)) gives 24912
WRITE(PEEK(£5000,REALY)) gives 2.46227E+29

see Appendix 3 for more details on the representation of types within Hisoft
Pascal 4.

2:3:647 SIZE(V)

The parameter of this function is a variable, The integer result is the amount
of storage taken up by that variable, in bytes,

2:3:4:2 INP(P)

INP is used to access the 130's ports directly without using the procedure
iNLINE. The value of the integer parameter P ig loaded into be BC register

SECTION 3 COMMENTS ANlj COMPILER OPTIONS.

I

;3.1 Comments.

A comment may oecur between any two reserved words, numbers, identifiers or special symbols -
see Appendix Z, A comment starts with a ‘{’ character or the ‘(# ' character pair. Unless the next
character is a ‘8’ all characters are ignored until the next ‘3’ character or ‘#)’ character pair. 1f a

'$’ was found then the compiler locks for a series of compiler options (see below) after which
characters are skipped until a ‘3’ or ‘#)’ 15 found.

2.2 Compiler Options.

The syntax for specifying compiler options is:

oL f
Ao _ |
A

|

The following options are available:
Option L!

Controls the listing of the program text and object code address by the compiler.

If L+ then a full listing is given.
1f L~ then lines are only listed when an error is detected,

DEFAULT: L+

Option O

" -
Controls whether certain overflow checks are made, Integer multiply and divide and

; _ ' ali real
arithmetic operations are always checked for overfiow.

If O+ then checks are made on integer addition and subtraction.
If O- then the above checks are not made.

DEFAULT: O+

y ; ‘ 31

?

Option Ct

Controls whether or not keyboard checks are made during object code program execution., If C+
then if CC is pressed then execution will return to with a HALT message - see Section 2.,3.3.4,

This check is made at the beginning of all loops, procedures and functions. Thus the user may use
this facility to detect which loop etc, is nat terminating correctly during the debugging process. It
should certainly be disabled if you wish the aobject program to run quickly. ‘

Iﬁ C- then the above check is not made.

DEFAULT: C+

Option 5!

Cantrols whether ar not stack shecks are made,

If S+ then, at the beginning of each procedure and function call, a check is made to see if the stack
will probably overflow in this block. If the runtime stack overflows the dynamic variable heap or
the program then the message ‘Out of RAM at PC=XXXX' is displayed and execution aborted.
Naturally this is nat faolpraof} if a procedure has a large amount of stack usage within itself then
the program may ‘crash’s Alternatively, if a function contains very little stack usage while utilising
recursion then it is possible for the function to be halted unnecessarily,

If S- then no stack checks are performed.

DEFAULT: S5+

Option At | ' g -
Controls whether checks are made to ensure that array indices are-within the bounds specified in
the array’s declaration. T

If A+ and an array index is too high or too low then the message 'Index too high’ or ‘Index too
low’ will be displayed and the program execution halted,

If A- then no such checks are made.

DEFAULT: A+

Qption I

When using 14 bit 2’s complement integer arithmetic, overflow occurs when performing a 2 ¢, >=,
ar <= aperdtion if the arguments differ by more than MAXINT (32767) If this occurs then the
result of the comparison will be incorrect, This will not normally present any difficulties! however,
should the user wish to compare such numbers, the use of I+ ensures that the results of the
comparison will be correct. The equivalent situation may arise with r2al arithmetic in which case an
overflaw error will be issued if the a\jf_guments differ by more than approximately 3.4E3% ; this
cannat be avoided,

If I- then no check for the result of thé above comparisons is made.

%

At Gasd &3 N Ae b 8 A

Option P; ;

If the P option is used the device to which the compilation listing is sent is changed i.e, if tre
video screen was, being used the printer is used and vice versa, Note that this option is not
foliowed by a '+ or '~/

DEFAULT! The video screen is used.

ption F!

This option letter must be followed by a space and then an eight character filename. If the filename
has less than eight characters it should be padded with spaces,

The presence of this option causes inclusion of Pascal source text from the specified file from tt=
end of the current line - useful if the Programmer wishes to build up a ‘library’ of much-use-
procedures and functione on tape and then include them in particular programs.

The program should be saved using the built-in editor’'s 'p’ command. On most systems the lish
option L- should be used - otherwise the compiler will not compile fast enough,

Example! ($L-,F MATRIX include the text from a tape file MATRIX);

When writing very large programs there may not be enough room in the computer’s memary for ths
saurce and object code to be present at the same time. It is however possible to compile such
programs by saving them to tape and using the ‘F’ option - then.only 128 bytes of the source are in
RAM at any one time, leaving much more room for the object code, ’

_This option may not be nested and is not implemented in the ZX Spectrum versian,

The compiler options may be used selectively, Thus debugged sections of code may be speesded ur
and compacted by turning the relevant checks off whilst retaining checks on untested pieces of
code.

¥
W)

B e R R PO e

LA UL 1=

+ A e S . . 5]
Cption P { rfoT JAde et eap, Zx SPLCTaue

If the P option is used the device to which the compilation listing is sent is changed i.e. if tre
video screen was being used the printer is used and vice versa, Note that this option is nc*
foliowed by a ‘+' or =

DEFAULT: The video screen is used,

tion F!

This option letter must be foliowed by a space and then an eight character filename. If the filename
has less than eight characters it should be padded with spaces.

The presence of this option causes inclusion of Pascal source text from, the specified file from tt.«
end of the current line - useful if the Programmer wishes to build up a ‘library’ of much-use:z
procedures and functione on tape and then include them in particular programs.

The program should be saved vsing the built-in editor’s ‘P’ command. On most systems the list
option L- should be used - otherwise the compiler will not compile fast enough,

Example! ($L-,F MATRIX include the text from a tape file MATRIX)!

When writing very large programs there may not be enough room in the computer’s memory for the
source and object code to be present at the same time. It is however possible to compile suck
programs by saving them to tape and using the ‘F’ option - then only 128 bytes of the source are in
RAM at any cne time, leaving much more room for the object code,

This option may not be nested and is not implemented in the X Spéctrum version,

The compiler options may be used selectively, Thus debugged sections of code may be speedea ut
and compacted by turning the relevant checks off whilst retaining checks on untested pieces of
code.

33

4.1 Introduction to the Editor,

The editor supplied with all versions of Hisoft Pascal 4T is a simple, line-based editor Cesigned tc
work with all 280 operating systems whije maintaining ease of use and the ability to edit program=
Quickly and efficiently.

Text is held in memory in a compacted form; the number of leading spaces in a line is held as gre
character at the beginning of the line and all HP4T Reserved Words are tokenised into one
character, This leads to a typical reduction in text size of 25%. :

NOTE! throughout this section the DELETE key is referred to instead of the control code CH. It
appears more natural to do this. :)

The editor is entered automatically when HP4T is loaded from tape and displays the message:

Copyright Hisoft 1982
All rights reserved ~

followed by the editor prompt >,

In response to the prompt you may enter a command line of the following format:
€ Ni, N2, 51, 52

followed by a RETURN where!

C . is the command to be executed (see Section 4.2 below),
N1 is a number in the range 1 - 32747 inclusive,
N2 is a number in the range 1 - 32767 inclusive,
S1 is a string.of characters with a maximum length of 20.
52 is a string of characters with a maximum length of 20,

The comma is used to separate the various arguments (although this can be changed - see the ‘S’
command) and spaces are ignored, except within the strings, None of the arguments are mandatory
although some of the commands (e.g. the 'D'elete command) will not proceed without Nji and Nz
being specified, The editor remembers the previous numbers and strings that you entered ang uses
these former values, where applicable, if you do not specify a particular argument within the
commanc line. The values of NI and N2 are initially set to 10 and the strings are initially empty. 1#

you enter an illegal command line such as F-1,100,HELLO then the line will be jgnored and thc

message ‘Pardon?’ displayed - you shouid then retype the line correctly e.g, F1,100,HELLO. Thie
error message will also be displayed if the length of 52 exceeds 20; if the length of Si js greater
than 20 then any excess characters are ignored, .

Commands may be entered in upper or lower case,

While entering a command line, all the relevant control functions described in Section 0.0 may be
used e.g. CX to delete to the beginning of the line.

The following sub-section details the various commands available within the editor - note that

wherever an argument is enclosed by the symbols ‘< >’ then that argument must be present for the
command to proceed. : :

35

4,2 The Edgtor Commands, ’

$:2.1 Text Insertion,

Text may be inserted into the textfile either by typing a line number, a space and then the required

text or by use of the ‘I’ command, Note that if you type a line number followed by RETURN (i.e.
without any text) then that line will be deleted from the text if it exists, Whenever text is being

the beginning of the line), CI (go to.the next tab
pasition), CC (return to the command loop) and CP (toggle the printer)

! ! may be employed. The
DELETE (or BACKSPACE) key will produce a destructive backspace but not beyond the beginning of

his buffer should become
you must then uyse DELETE or CX to

ommand? I n,m

Use of this command gains entry to the automatic insert made? you are prompted with line numbers
starting'at n and incrementing in steps of m. You enter the required text after the displayed line
number, using the various control codes if desired and terminating the text line with RETURN, To

exit from this made use the control function CC (see Section 0:0 and the relevant Implementation
Note), ’

I, when typing in text, you get to the end of a screen line without having entered 128 characters
(the buffer size) then the screen will be scrolled

4.2,2 Text Listing, | | - o -

Text may be inspected by use of the 'L’ command! the number of lines displayed at any ane time

during the execution of this command is fixed initially (see your Implementation Note) but may be
changad through use of the ‘K’ command,

Command: L n,m

This lists the current text to the display device from line number n to line number m inclusive,
The default value for n is always 1 and the default valye for m is always 32767 i.e. default
values are not taken from previously entered arguments. To list the eptire textfile simply use ‘L’
without any arguments, Screen lines are farmatted with a left hand margin so that the line number
1s clearly displayed, The number of screen lines listed on the display device may be controlled
through use of the 'K’ command - after listing a certain number of lines the list will pause (if not

yet at line number m), hit control function CC fa return to the main editor loop or any ather key to
continue the listing,

36

Command: K n

'K’ sets the number of screen lines to be listed to the display device before the display is pause:
as described in ‘L' above, The value (n MOD 25¢6) is computed and stored. For example use KS if
you wish a subsequent ‘L’ist to produce five screen lines at a time.

4,2.3 Text Editing.

Once some text has been created there will inevitably be a need to edit some lines, Various
commands are provided to enable lines to be amended, deleted, maved and rvenumbered:

-~

Command! D {n,md>

All lines from n to m inclusive are deleted from the textfile. If m<n or less than two arguments
are specified then no action will be taken; this is to help prevent careless mistakes, A single lire
may be deleted by making m=n | this can also be accomplished by simply typing the line numbe-
followed by RETURN,

s

Command: ¥ n,m

This causes the text at line n to be entered at line m deleting any text that already exists there,
Note that line n is left alone. So this command allows you to ‘M‘ove a line of text to another
position within the textfile, If line number n does not exist then no action is taken,

Command: X <n,m>

Use of the ‘N’ command causes the textfile to be renumbered with a first line number of n anc -
line number steps of m. Both n and m must be present and if the renumbering would cause an;
line number to exceed 32767 then the original numbering is retained,

Command: F nym,f,s ! -

The text existing within the line range n<x < m is searched for an occurrence of the string § -
the ‘find’ string. If such an occurrence is found then the relevant text line is displayed and the
Edit mode is entered - see below. You may then use commands within the Edit mode to search fo-

Note that the line range and the two strings may have been set up pf'eviously by any other commanc
so that it may only be necessary to enter ‘F' to initiate the search - see the example in Section 4.
for clarification. -

Command! En

Edit the line with line number n. If n does not exist then no action is taken; othefwise the line is

copied into a buffer and displayed on the screen (with the line number), the line number is displayed
again underneath the line and the Edit mode is entered, All subsequent editing takes place within
the buffer and not in the text itself; thus the original line can be recovered at any time,

37

'

In this mode a pointer is imagined moving through the line (starting at the first character) and
various sub-commands are supparted which allow you to edit the line. - The sub-commands are!

' ' (space) - increment the text pointer by ane i.e. point té the next character in the line.
You cannot step beyond the end of the line. '

DELETE (or BACKSPACE) - decrément the text pointer by one to point at the previous
character in the line. You cannot step backwards beyond the first character in the line,

c1 (control function) - step the text pointer forwards to the next tab position but not
beyond the end of the line.

, RéTURN - end the edit of this line keeping all the changes made,

Q - quit the edit of this line i.e. leave the edit ignoring all the changes made and leaving
the line as it was before the edit was initiated, '

R - reload the edit buffer from the text i.e, forget all changes made on this line and
restore the line as it was originally, &

L - list the rest of the line being edited i.e. the remainder of .the line beyend the current

pointer position. You remain in the Edit made with the pointer re-positioned at the start of
the line,

K - kill (delete) the character at the current pointer position,

L - delete all the characters from (and including) the current pointer position ta the end of
the line,) .

F - find the next occurrence of the ‘find’ string previously defined with}n a command line
(see the ‘F’ command above). This sub-command will automatically exi¥ the edit on the
current line (keeping the changes) if it does not find another ocgurrence of the ‘find’ string
in the current line, If an occurrence of the ‘find’ string is detected in a subsequent line
{within the previously specified line range) then the Edit made will be entered for the line
in which the string is found. Note that the text pointer is always positioned at the start of
the line after a successful search, T I

S - substitute the previously defined ‘substitute’ string for the currently found accurrence
of the ‘find’ string and then perform the sub-command ‘F* i.e. search for the next occurrence
of the "find’ string, This, together with the abave ‘F’ sub-command, is used to step through
the textfile optionally replacing occurrences of the ‘find’ string with the ’'substitute’ string
- see Section 4.3 for an example.

#*Important Note## In the current version of HP4AT there is a known bug in the operation of

the sub-command ‘S’ - this sub-command shaould only be used immediately after an ‘F’
command, an ‘F’ sub-command or an 'S’ sub-command. In practice this should pose no
problems.

[- insart characters at the current pointer pasition. You will remain in this sub-made
until you press RETURN = this will return you to the main Edit mode with the pointer

positioned after the last character that you inserted. Using DELETE (or BACKSPACE)
within this sub-mode will cause the character to the left of the pointer to be deleted from

38

the buffer while the use of CI (control function) will

advance the pointer to the rext tar
position, inserting spaces.

X - this advances the pointer to the end of the line and automatically enters the inser®
sub-mode dgtailed above.

C - change sub-mode. This allows you to overwrite the character at the current pointe~
position and then advances the pointer by one. You remain in the change sub~mode until you
press RETURN whence you are taken back to the Edit mode with the pointer positioned afte-
the last character you changed. DELETE (or BACKSPACE) within this sub-mode simply
decrements the pointer by ane i.e. moves it left while CI has no effect,

4.2.4 Tape Commands. . .
Text may be saved to tape or loaded from tape using the commands ‘P’ and ‘G*}

Command: P n,m,s

The line range defined by n ¢ x < m is saved to tape in HP4T format under the filename specifiéc
by the string s. Remember that these arguments may have been set by a previous command. Before
entering this command make sure that your tape recorder is switched on and in RECORD mode.*
While the text is being saved the message ‘Busy..’ is displayed,

Command: G;,s

The tape is searched for a file in HP4T tape format and with a filename of s. While the search is
taking place the message 'Busy..' will be displayed. If a valid HPAT tape file is found but has
| the wrong filename then the message ‘Found’ followed by the filename that was found on the tape
is displayed and the search continued, Once the correct filename is found then ‘Found will appea-

on the list device and the file will be loaded into memory. If an error is detected during the loa:z
“then ‘Checksum error’ is shown and the load aborted., If this happens you must rewind the tape,
press PLAY and type ‘G’ again.

{ If the string ' s is empty then the first HPAT file on the tape will be loaded, regardiess of ite
‘ filename.

While searching of the tape is going on you-may abort the load by holding CC down; this wil:
interrupt the load and return to the main editor loop.

-
~ Note that if any textfile is already present then the textfile that is loaded from tape will be
‘ appended to the existing file and the whole file will be renumbered starting with line 1 in steps cf

; 4.2.3 Compiling and Running from the Editor.

Command:C n

This causes the text starting at line number n to be compiled. If you do not specify a line number
then the text will be compiled from the first existing line. For further details see Section 0.2«

37

Command: R

The previously compiled abject code will be executed, but anly if the source has not been expanded
in the meantime - see Section 0.2 for mare detail,

Command: T n

This is the ‘T’ranslate command. The current source is compiled from line n (or from the start if n
is omitted) and, if the compilation is successful, you will be prampted with ‘Ok?’: if you answer ‘Y’
to this prompt then the object code produced by the compilation will be moved to the end of the
runtimes (destroying the compiler) and then the runtimes and the object code will be dumped out to
tape with a filename equal to that previously defined for the ‘find’ string, You may then, at a later
stage, load this file into memary, using the HP4T loader, whereupon it will automatically execute
“the object program. Note that the object code is located at and moved to the end of the runtimes so
-that, -after a ‘T'ranslate you will need to reload the compiler - however this should present na
problems since you are only likely to ‘T'ranslate a program when it is fully working.i

If you decide not to continue with the dump to tape then simply type any character other than 'Y’ to
the ‘Ok?’ prompt} control is returned ta the editor which will still function perfectly since the
object code was not moved, ' e

4.2.,6 Other Commands,

Command: B

This simply returns control to the operating system. For details of haw to re-enter the compiler
refer to the HP4T Alteration Guide and your Implementation Note,

;. el
Command: O n,m .

.

Remembar that text is held in memory in a tokenised farm with leading spaces shortened inta a one
character count and all HP4T Reserved Words reduced to a one character token., However if you
have somehow got same text in memary, perhaps from another editor, which is not tokenised then
you can use the 'O’ command to tokenise it for you. Text is read into a buffer in an expanded form
and then put back into the file in a tokenised form - this may of course take a little time to
perfarm. A line range must be specified, or the previously entered values will be assumed.

Command: S,.d

This command allows you to change the delimiter which is taken as separating the arguments in the
command line, On entry to the editor the comma ‘)’ is taken as the delimiter] this may be changed by
the use of the 'S’ command to the first character of the specified string d. Remember that once you

have defined a new delimiter it must be used (even within the 'S’ command) until another one is
specified, : .

Note that the separator may not be a space,

40

4.3 An Example of the use of the Editor,

Let us assume th}t you have typed in the following program (using 110,10);

10 FROGRAM €UEBELESORT
+20 CONST .

30 Size = 2000

40 vaR .
50 Numbers ! ARRAY (1..Sizel OF INTEGER;
60 I, Temp INTEGER:

70 EEGIN :
80 FOR I!=1 TO Size DO Number[I] := RANDOM}
?0 REFPEAT

100 FOR Ii=1 TO Size DO

110 Noswaps $= TRUE

120 IF Number[I] > Number[I+13 THEN
130 EBEGIN :
140 Temp = Number(I3];

150 Number[I] = Number[I+13];
160 Number[I+1] = Temp

170 Noswaps = FALSE

i80 END

190 UNTIL Noswapss

200 END,

This program has a number of errors which are as follaws!

~ Line 10 Missing semi-colon.

Line 30 Not really an error but say we want a size of 100,
Line 100 Size should be Size-1, -

Line 110 This should be at line 935 instead.

Line 190 Noswapss should be Noswaps,

Also the variable Numbers has been 'dedared but all references are
BOOLEAN variable Noswaps has not been declared, ‘ :

41

to Number, Finally the

-

b

¥

To put all this right we can proceed as follows!

F40,200,Number,Numbers
E10

bE?,O

F1004100,S5ize,Size-1

M110,95
110

E190

63 Noswaps ! BOOLEAN;

N10,10

and then use the sub-command ‘S’ repeatedly,
then the sequence X | RETURN RETURN

then K C 1 RETURN RETURN

followed by the sub-command ’S’.

followed by RETURN,
then X DELETE RETURN RETURN

to renumber in stepé of 10,

You are strongly recommended to work through the above ex.impla
actually using the editor - you may find it a little cumbersome at first if you have been used to
sCreen editors but it should not take long to adapt, ’

APPENDIX § ERRORS.

A.l.d Error numbers generated by the compiler.

1. Number too large.
2. Semi-colon expected.
3. Undeclared identifier,
4, Identifier expected.
3+ Use ‘=’ not ‘i=’ in a constant declaration.
& '=’' expected, ; : =1 latt
7. This identifier cannot begin a statement.
8. ‘=’ expected.
9. ‘) expected.
10, Wrong type, b
11, expected.
12, Factor expected. _
13, Constant expected. ’ t
14. This identifier is not a constant.
15. ‘'THEN’ expected.
16: 'DO’ expected.
17, 'TO’ or '‘DOWNTO’ expected. ~ ' B
18s (" expected.
19, Cannot write this type of expression,
. 20, ‘OF’ expected.
’ 2% 1Y expected.
22, 'Y expected,
23, 'PROGRAM’ expected.
24, Variable expected since parameter is a variable parameter,
25, 'BEGIN’ expected.
26, Variable expected in call to READ.
~ 27. Cannot compare expressions of this type.
23, Should be either type INTEGER or type REAL,
29. Cannot read this type of variable,
30. This identifier is not a type.
31. Exponent expected in real number,
; 32, Scalar expression (not numeric) expected. -
‘ 33, Null strings not allowed (use CHR(O)), -
34, [’ expected,) ' .
35. ‘3’ expected. : ¢ -
36+ Array index type must be scalar. ‘
37. ‘.’ expected.,
33. '} or ‘) expected in ARRAY declaration.
39. Lowerbound greater than upperbound.
40, Set too large (more than 256 possible elements).
41, Function result must be type identifier.
42, 'y or ']’ expected in set,
43, ‘s’ Or ‘Y or 'Y expected in set,
44, Type of parameter must be a type identifier,
45« Null set cannat be the first factor in a non-assignment statement,
- 46, Scalar {incdluding real) expected,
B 47, Scalar (not including real) expected.
; B
!

et o e o < oo

48, Sets incompatible.
49, ¢’ and ">’ cannot be used to compare sets.,
50. ‘FORWARD’, 'LABEL’, ‘CONST’, 'VAR', ‘'TYPE' or 'BEGIN’ expected.

43

o

7

51, Hexadecimal digit expected,

92, Cannot POKE sets,

%3+ Array too large O 44K),

S4, 'END’ or “}’ expected in RECORD definition,

335+ Field identifier expected,

36, Variable expected after ‘WITH,

S7. Variable in WITH must be of RECORD type. :

32, Field identifier has not had asaciated WITH statement,

27, Unsigned integer expected after ‘LABEL’,

£0. Unsigned integer expected after ‘GOTO".

¢1. This label is at the wrong level,

62, Undeclared lahel,

63, The parameter of SIZE should be a variable.

¢4, Can only use equality tests for pointers,

67. The anly write parameter for integers with two 'i’s is e:miH,
63, Strings may nat contain end of line characters.

4%, The parameter of NEW, MARK aor RELEASE should be a variable of pointer type.
70, The parameter of ADDR should be a variable.

A.1,2 Runtime Error Messaqes.

When a runtime error is detected then one of the following messages will be displayed, followed by
"at PC=XXXX’ where XXXX is the memary location at which the error occurred. Often the source
of the error will be abvious; if not, cansult the compilation listing to see where in.the program the
error occurred, using XXXX to cross reference, Qccasionally this does not give the correct result,

1, Halt

2, OQOverflow

3» QOut of RAM

4. /by zero also generated by DIV, . .

S. " Index too low 0 F
&, Index too high .
7. Maths Call Error :

2. Number tao large

9. Number expected

10, Line too long

11, Exponent expected

Runtime errors result in the program execution being halted.

AL L= A A BRESERMED WORDS AND PREDEFINED IDENTIFIERS.

A 2.1 Reserved Words,

4

AND ARRAY BEEGIN CASE CONST DIV : DC

|
i DOWNTO ELSE END FORWARD FUNCTION GOT0 1F
IN LAEBEL MOD NIL NOT OF CF
FACKED FROCEDURE FROGRAM RECORD REFEAT SET
THEN : ;
T0 TYFE UNTIL VAR WHILE "WITH

A 2.2 Special- Symbols.

The foliowing symbols are used by Hisoft Pascal 4 and have a reserved meaning:

|
MM

e A~ M
*®
. ¥ L AN
»

S
e a0 0

a6

o0

e

A 2.3 Predefined Identifiers,

The foliowing entities may be thought of a declared in a block surrounding the whole program anc

~ they are therefore available throughout the program unless re-defined by the programmer within a-
inner block.

For further information see Section 2.

CONST MAXIKT = 32767,

TYPE BOOLEAN = (FALSE, TRUE), : . .
CHAR (The expanded ASCII character set)} ! w
INTEGER = ~MAXINT,MAXINT; o

REAL (A subset of the real numbers, See Section 1303

PROCEDURE WRITE; WRITELN; READ; READLN; PAGE; HALT; USER; POKE; INLINE;
OQUT; NEW; MARK; RELEASE; TIN; TOUT;

FUNCTION ABS; SOR; ODD; RANDOM; ORD; 5UCC; .PRED; INCH; EOLN;
PEEK; CHR; SQRT; ENTIER; ROUND; TRUNC; FRAC; SIN; COS!
TAN; ARCTAN; EXP; LN; ADDR; SIZE; INP;

45

APPENDIX 2 DATA REPRESENTATION AND STORAGE,

A 3.1 Data Representation.

The following discussion details how data is represented internally by Hisoft Pascal 4.v

The information on the amount of storage required in each case should be of use to mos
programmers (the SIZE function may be used see Section 2.3.6,7); other details may be needed b
those attempting to merge Pascal and machine code programs, :

A 3.4.1 Integers.

Integers occupy 2 bytes of storage each, in 2's complement form,

Examples:
1 = £0001
256 = £0100
256 (= £FFO00

The standard 280 register used by the compiler to hold integers is HL,

A 2.1,2 Characters, Booleans and other Scalars,

‘ These occupy 1 byte of storage each, in pure, unsigned binary,
- Characters! 8 bit, extended ASCII is used,

e IEr
I[l

Cmw

Booleans!
ORDITRUE)=1 &0 TRUE is represented by. 1, = .
ORD(FALSE) = 0 s0 FALSE is representd by 0. . -

The standard 780 register used by the compiler for the above is A,

A 3.1,3 Reals,

The (mantissa, exponent) form is used similar to that used in standarg sdentific notation - only
using binary instead of denary, Examples! . ;

222410 or 1.0+ 2

12 1#10° or 1,0 % 2

47

»

»

. i =
=12.5 = -1.,29%x10 or -25x%x2
: F -ito01, xzd
= -1 .10012 X2 when riormalised,
0.1 = 1,0%10" or 1 o= 1 = Qel,
s 10 1010, 101,
50 now we need to do some binary long divis.
0.0001100
101 /1 0.100000000G600000
101
110
101
= 1000
101 at this point
we see that the
fraction recury
= 0.1, = 0.0001100,.
1011 . -
° . -"
1,1001100 x 2 answer .
So how do we use the above results to represent these numbers in the computer? Well, firstly we
reserve 4 bytes of storage for each real in the follawing format!
sigm normalised mantissa exponent data—l
23 2z 0 "7 0 , bit
; 7\ . -
e e ¢ e e ’ L
H L E D . register-
signd

narmalised mantissa?

exponent!

Thus!

!

ek
L= VRN
teout uoal
[o= B S e B e |

1000000
1000000
1100100
1100110

the sign of the mantissa; { = negative, 0 = positive.

the mantissa normalised to the form 1.xxxxxx
with the top bit (bit 22) always 1 except when
representing zero (HL=0, DE=0),

the exponent in binary 2's complement farm.

00000000 00000000 00000001

60000000 00000000 000000GO

J0000000 00000000 00000011

01100110 01100110 11111100
48

(£40,£00,£00,£01>

-C£40,£00,£00,£00)

(£664£66,£86,£FC)

So, remembering that HL and DE are used to hold real numbers, then we would have to load t-
registers in the following way to represent each of the above numbers!

r4 s LD HL,£4000

> LD DE,£0100
7

1 = LD HL,£4000

LD DE,£0000

-12,5 = LD HL,£E400

LD DE,£0300

0.1 = LD HL,£6666

. LD DE,£FC66

The last example shows why calculations involving binary fractions can be inaccurate;

6.1 cannot t
accurately represented as a binary fraction, to a finite number of decimal places,

N.B. Reals are stored in memory in the order ED LH.

A 3.1.4 Records and Arrays.

Records use the same amount of storage as the total of their components.,

Arrays: if n=number of elements in the array and
s=size of each element then

the number of bytes occupied by the array is n#s,

e.g. an ARRAY([1..10] OF INTEGER requires 10#2 = 20 bytes A
an ARRAY(2..12,1..10) OF CHAR has 11#10=110 elements and so requires 110 bytes.

A 31,5 Sats,

-
Sets are stored as bit strings and so if the base type has n elements then the number of byte
used is: (n-1) DIV 8 + 1, Examples:)

a SET OF CHAR requires (256-1)DIV8+1 = 32 bytes,
a SET OF (blue, green, yellow) requires (3-1) DIV 8 + 1 = 1 byte.

A 3.1.6 Pointers.

Pointers occupy 2 bytes which contain the address (in Intel format i.e. low byte first) of tr
variable to which they point. ‘ :

49

&

A 3.2 Variable Storage at Runtime.

There are 2 cases where the user needs information an how variables are stored at runtime:

a. Global variables - declared in the main program block.

b. Local variables - declared in an inner block.

c. Parameters and - passed to and from procedures and
returned values, Eunctions, '

These individual cases are discussed below and an example of how to use this information may be
found in ‘Appendix 4.

Global variables

Global variables are allocated from the top of the runtime stack downwards e.g. if the runtime
stack is at £B000 and the main program variables are! ‘

VAR i} INTEGER!
ch i CHAR;
x : REAL;

then!

i (which occupies 2 bytes - see the previous section) will be stored at locations £B000-2 and
LBOOO-I i.e, at LAFFE and t.AFFFo

ch (1 byte) will be stored at location LAFFE-1 i.e. at £AFFD,

x (4 bytes) will be placed at LAFF9, LAFFA, LAFFB and LAFFC.

Local variables *

Local variables cannot be accessed via the stack very easily so, instead, the IX register is -set up

at the beginning of each inner block so that (IX-4) points to the start of the block’s local
variables e.g. ,

FPROCEDURE test)
VAR) i,j ¢ INTEGER;
then!

i (integer - so 2 bytes) will ba placed at IX-4-2 and IX-4-1 i.e, IX-b and 1X-5,
} will be placed at IX-8 and IX-7,

Parameters and returned values

S0

_ Yalue paramete'rs' are treated like local variables and, like these variatiles, the earhier a paramele,
1s declared the higher address it has in memory. However, unlike variables, the lowest (not the
highest) address is fixed angd this is fixed at (IX+2) £4g. '

FPROCEDURE test(x: ¢ REAL} ¢ INTEGER);
then:

j (allocated first) is at 1X+2 and IX+3,
1 is at IX+4, IX+5, IX+&, and IX+7,

Variable parameters are treated just like value parameters except that they are always allocated 2
bytes and these 2 bytes contain the address of the variable e.g, ‘
. PROCEDURE test(i ! INTEGER; VAR X : REAL);

then:

" the reference to x is placed at IX+2 and IX+3; these locations contain the addrecs where x s
stored. The value of i is at IX+4 and IX+5,

Returned values of functions are placed above the first parameter in memory e.g.
FUNCTION test(i { INTEGER) ; REAL;

then i is at IX+2 and IX+3 and space is reserved for the returned value at IX+4, IX4+5, IX+4 and
IX+7,

51

APPENDIX 4 SOME EXAMPLE HP4T PROGRAMS,

The following programs should be studied carefully if you are in any doubt as to how to program in
Hisoft Pascal 4T, :

'‘CFrogram to illustrate the use of TIN and TOUT.
The program constructs 8 very simple telephorie
directory on tape and thern reads it back. You
should write any searching required.>

FROGRAM TAFE;

CONST
Size=10; .

TYFE
Entry = RECORD ;
Name ¢ ARRAY [1..101 OF CHAR}
Number { ARRAY [1..103 OF CHAR
- END; s

- VAR
Directory ¢ ARRAY [1..8izel OF Entry;
I ¢ INTEGER;

BEGIN
“€et wp the directory,.>

. FOR I:= 1 TO Size DO
BEGIN
WITH DirectorylI] DO
BEEGIN :
WRITE('Name please’);
READLN;
READ(Name) ;
WRITELN;
KRITE('Number please’); ' s 0°
READLN; ' B
READ (Number) § ’
WHRITELN
END
END;

{To dump the directory to tape use..>
TDUT(’Director’,ADDR(Directors).SIiE(Directors))

“Now to read the array back do the following..>
TIN(’Director’,ADDR(Directory))

“And row You can process the directory as You uish.;;..ﬁ

END .

S3

10
20
30
40

1=
~d

60
70
80
?0
100
110
120
130
140
150
160
170
130
190
200
210
220
230
240
256
260
276
280
290
300
310
320
330
340
330
3460
370
380
390
400

TFroqram to list "1

-

»

Shows uge pf Pointers,

FROGRAM ReverseLine;

TYPE elem=RECORD
next: Aelem!

ch?

VAR Prev,cur,heap ling

BEGIN
REFEAT
‘HARK(heaP)3
Previ=NIL:

CHAR

WHILE NOT EOLN Do

EEGIN

NEW(cur)
READ(cur“.ch):

curA.next:=prev:

prev:=cur

END;

“Hrite out the 1lir

set up backwards,

Curi=preay}

RHILE cur <> NIL DO

EEGIN

HRITE(CUP“.ch);
Curi=curAr,reuxt

END;
"WRITELNS

RELEASE(heap):

"READLN
UNTIL FaLSE
END.,

e backwards by

ines of 3 file in rey

records, MARK a3

‘SLi-"

erse drder}
nd RELEASE.>

“Create linked-1

€all Pointers ¢

Cdo this many ¢
Casgign top of
“Points to g v

ist structurex

o ‘elem’>

imes)
heap to ‘heap’,
araible yet.>

{create a new dynamic record>

Land 3ssign its
character from
Lthis field’g p

field to ore
file.>
ointer adresses:

{previous record,>

scanning the records

-

{NIL g firstd

CWRITE this ri
{Addrgss Previ

{Release dynas

tHait for ariot
fUse CC to ei

eld i,e, character
ous field,>

ic variable sSpace
her lipe>
>

N

10

-5
4.

30
40
S50
60
70
80
90
100
110
120
130
140
150
160
170

180

190
200
210
220
230
240
250
260
270
280
290
300
310
320

330

340
350
360
370
380
390
400
410
4220
130
440
450
460
470

fFrogram to show the use of recursion>

FROGRAM FACTOR;

<This proaram calculates the factoriasl of a number irput from the

keyboard® 1) usirg recursiorn and 2)

TYFE
FOSINT = 0..MAXINT;
VAR
METHOD : CHAR;
NUMEER § POSINT;
{Recursive algorithm.>
FUNCTION RFAC(N ¢ POSfNT) ¢ INTEGERS
VAR F ¢ POSINT;
BEEGIN

IF N>1 THEN Fi= N x RFAC(N-1)
ELSE Fi= 1;
RFAC ¢= F

END;
{Iterative solution

FOSINT) ¢ INTEGER;

veing an iterative method.:

CRFAC invoked N times)

FUNCTION IFAC(N ¢
VAR I,F$ FOSINT:
EEGIN
Fos= 13)
FOR I ¢= 2 TO N DO F := FxI: {Simple Loop>
IFAC:=F
END;
BEGIN B
REFEAT 5
WRITE(’Give method (I or R) and number 2y :]
READLN ’
READ (METHOD , NUMEER) ;
IF METHOD = ‘R’

THEN WRITELN(NUMEER, ‘!
ELSE WRITELN(NUMEER, ‘!
UNTIL NUMEER=0
END.

-55-—

"+ RFAC (NUMEER))
"+ IFAC(NUMEER))

0

0

[o= en)

-

cooo0OCoOLOOC o0

e N A - N - I I R R O N Y ey

TRrogram Lo show how to ‘get 4our hands dirty‘!

1e2. NOw Lo modify Fascal variables using machine code.
Demanstrates FEEK, FORE, ADDR and INLINE, > .
FROGRAM Adiveault2; .
VAR riREAL;

FUNCTION divby2 (:iREAL) {REAL S {Function to divide by 2

oo Quickly>
VAR i!INTEGER;
EEGIN.
i1=ADDR () +1; | LFoint to the exponent of >

FOKE(i,FRED(FEEK(i,CHAR))) “Decrement the exponent of x

4 see Appendix 3.1,3,>
divhy2 =

END;
FUNCTION Multbhy2 (e IREAL) SREAL S “Function to multiply by 2.?
o0 qUiCkls?
BEGIN
INLINE(£DD,£34,3) ; LINC (IX+3) - the gupornent of

- s5ee Appendix 3,2.5

. S

maltby2 =5

END

EBEGIN

REFEAT
HRITE(’Enter the number r Y
READ(r) _ CNo need for READLN - gee

: Section 2. 3.1.8 p .

RRITELNC‘r divided by two is’,divbuy2(r)izsay: . :
RRITELNC’r multinlied by two is’,multby2(r):7:2)

UNTIL r=)

END,

| BIBLIOGRAFEY.

K. Jensen and PASCAL USER MANUAL AND REPORT.
" N, Wirth : Springer-Verlag 197S.
W. Findlay and PASCAL. AN INTRODUCTION TO SYSTEMATIC PROGRAMMING.
D. A, Watt Pitman Publishing 1978.
J. Tiberghien THE PASCAL HANDBOOK.

SYBEX 1981,

J. Welsh and INTRODUCTION TO PASCAL.
J. Elder.

The first anc¢ third books above are useful for refersnce purposes whereas tihe seconcl

-and fourth bocks are introductions to the language and aimed touwards beginners,

