b2

Amcmacr erviigigat |

CRL

TR TO_MAIN T TON.
S ———— R AT

For a long time now there has been the need for a BASIC
extension to improve {ts graphics capabilities. Graphics
Seem to have become the most Important feature of Gny microe-
computer. The Spectrum is no exception but fortunately has
@ quite reasonable graphic power. [ts major short-coming

Is the fact that you can only have a maximum of two colours
in a single character square. This problem can, however, be
mainly solved by careful screen layout,

When you think about it there are few BASIC commands which
actually- affect the content of the screen CLS, PRINT, PLOT,
DRAW and CIRCLE. These can only directly moke static displays.
To produce a moving display {s very complicated. By careful

use of the PRINT command you can get some sort of 'jumoy’
movement. When you want to move more than about two objects

at once then things get really complicated and even a very
experienced BASIC programmer would find 1t extremely difficult
to produce the convincing graphics. there Is g least .
tendancy to return to the sophistication of the early ZX8]
BASIC games where In a aircraft-carrier bombing game, for in-
stance, the plane would stop dead {n mid air while the bomb
would slowly, jumpily,move dowmvards. Since the pioneering days
of the ZX80 machine graphics have Imoroved dramatically. The
BASIC, however, has not, it still contains the same old smatter-
ing of vague BASIC graphic statements.

‘FIFTH' helps to bring BASIC back into ‘Line’ with the graphic
power of today‘s machines, ‘FIFTH’, although it does other things
as well, 1s matnly designed to allow you to produce BASIC games
with much the same effect as machine code ones. 'FIFTH’ also

saves comouter memory since operations that would have previously
taken many lines of BASIC programming can be condensegd into g
small selection of the 25 ‘FIFTH’ commands. ‘FIFTH’ makes ‘it

SO easy to get graphics moving around the screen that it makes

it lnviting to do so; encouraging you to write effective programs.

‘FIFTH* graphics are incredibly smooth. the objects liter-
ally float across the screen making It g olegsure to watch
them. You dre also not limited to a few objects but gs many as
you like, within regson. ‘FIFTH’ is not @ languade on its own
but augments the already resident BASIC. You can make the two
languages communicate with each other with the minimum of fuss.
You might think that the slow speed of BASIC would limit the
performance of ‘FIFTH’ but this is not so. One of the advantages
of 'FIFTH’ ls that the graphics are {ndependant of the program.
this does not mean you have difficulty in controlling them
but relieves you from the fuss of updoting screen positions and
erasing characters etc. This method 1s much faster than normal
BASIC movement since the erasing, updating and re-printing
routines are well written tn ultrg fost machine code. To get
a 'FIFTH’ object to move ground the screen all vou have to do
is give the comouter certain information about its direction
and speed etc. 'FIFTH’ can then get on with the job of actually
moving the object. It will keep moving it {n the specified direct-
fon and speed until it goes off the edge of the screen or {t
hits something else., This is where another powerful feature of
'EIFTH’ comes in; @ sort of ‘parallel’ BASIC, Parallel BASIC means
that you have two independent programs running at the scme time.
"EIFTH’ can’t do that exactly since only one program can act-
ually be running at once but appears to almost do so. What
happens is that if, say, an object went off the edge of the
screen then something called @ service routine would be called.
This ts @ short routine written in BASIC, which s suppllied with
the necessary information, (what went off the screen and in
which direction) and has to do something approprigte. In most
cases this would mean pointing the object the opposite way to
what went off the screen and sending 1t on its merry way again,
until it goes off the edge of the screen again or ‘hits’ some-
thing else on its way. A routine to handle a collision between
two objects, or tnteracts gs they are called, s written in g
similor way. In this case you would hove to send each of the
objects involved in the collision I{n opposite directions to
aveid further ones. The advantage of this is that the service
routine is called automatically, without any special promoting

from the rest of the program. I[n fact., the rest of the
program won‘t even know that it has been interupted. This
means that the '‘main-lap’ of the program can be entirely
unconnected with the objects moving on the screen. This lack
of dependance on BASIC (except for the service routines and
parts of the main loop) really means that the speed of BASIC
{s of les.s {mportance than uysual. The moving graphics slow
down BASIC auite ¢ lot, depending on the ammount of objects
moving on the screen at thot time. It still takes much less
time, however gccessing each moving object individually

like the normal way BASIC would produce movement,

As well as providing moving graphics, ‘FIFTH’ also vastly
{moroves the Spectrum’s sound. The BEEP command does not produce
anything like the zaps and bangs you would probobly reauire

in a game. The sound effects ‘FIFTH’' provides are very useful for
this purpose. ‘FIFTH’ also hos commands to rapidly change the
on-screen colours and to print {n larger than normal characters.

That comoletes this introduction to ‘FIFTH’. I hope that it
has given you an insight into the basic way ‘FIFTH’ operates.
Remember, you cannot write g program in just ‘FIFTH’, it s an
enlargement and extension to BASIC.

Printed by CLEARAPRINT
01-274 2527/0872
@© Computer Rentals Ltd.

TR N 'EJETH’

Version 1.24

by Richard M. Tuglor

The 2x Spectrum s certainly o formidable and very powerful machine.
The diclect of BASIC that It uses., Sinclair BASIC, is well blessed

with g variety of useful extraneous commands, Like most other makes of

machine it is used to a large extent for playing games on.
Unfortunately, BASIC is not really desianed for writing fast
moving graphic games. This is especially true of Sinclair

BASIC which lacks the speed of many other dialects. There Is

@ complete absence of commands for maving characters, and larger
blocks, ground the screen with both smoothness and speed. The
usual remedy for this problem has been writing games in machine
code, This can certainly produce amazing effects but tends to be
out of reach for the majority of users. Few people gre willlng
to take the time and trouble of learning the whole new language
of the machine code. 'FIFTH' remedies these short-comings to @
large extent by providing g large auantity of powerful, useful
graphics commonds. ‘FIFTH’ {s an extension to BASIC so there

is only a small omount of learning to do {f vou already know
BASIC - which [suggest you should, if vou wish to use this
program to its full potential.

Written entirely in machine code for the 48K verston, 'FIFTH’
resides cbove RAMTOP. [t occupies g shade over 4K or 4338 bytes
to be precise.TO LOAD USE, CLEAR MUMBER 61023: LOAD "“.

51030 65368 65535 |
BASIC AREA - SEE PI65 , | USER DEFTNABLE |
| OF THE SINCLAIR MANUAL FIFTH GRAPHICS

F16. 1 - 'FIFTH’S’ Position {n the Memory Map.

Mony of the *FIFTH’ Commands have to be cross-referenced
with one another. References sometimes have to be made with
commands not discussed at that particular point. For this
regson, you may not be abie to understand meny things on the
first reading of this manual but as you unconsciously inter-
connect everything, your understanding should incregse.

Examples are scattered liberally throughout this manugl, They
should be entered exactly as listed with the 'FIFTH’ toolbox
program loaded. After running, if they do not stop qutomatic-
ally you should use BREAK. Type NEW to be sure of clearing
the BASIC area beofre typing in the next example routine. You
will not need to re-lood the °‘FIFTH’ program since it resides
above RAMTOP and is not affected by NEW.

The commands are put into REM statements in the BASIC program.
Every program which uses ‘FIFTH’ must start with the following
1ines:-

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030

The 1000 in line 10 tells ‘FIFTH’ how much memory to reserve for
the object data, this may vary from program to program. This is
fully described under the OBJECT command. Line 20 calls the main
body of the actual 'FIFTH’ program. Although [t s usual to have
these two lines at the beginning of the progrom, this s not
always so. In fact, it must be gt the main entry point of the
program which is better ot the end rather than the beginning of
a program.

After executing line 20 the Interpreter carries on as normal

(the interpreter is a larger routine i{n the Spectrum’s 16K ROM
which actually executes BASIC proarams). There {s, however, one
exception, when the interpreter finds a REM statement {t tredts
it in a different way. Normally a REM command would be completely
tgnored and the interpreter would go straight onto the next line.

RN

However, the REM statement may now contain 'FIFTH’ commands
S0 the interpreter acts accordingly. The first thing [t does
Is to look at the first character, if this s an gsterisk then
it treats the REM as it would have normally. If it is not an

asterisk then the intef preter can be sure that the REM contains
FIFTH commands .

1000 REM * THIS IS A COMMENT
Comment lines can be put in as
normal if you include on asterisk,

Like normal BASIC statements you can have

one line but instead of being separgted bymgélté:;et;::mg:gs -
seperated by the rather neglected back-slash (back-slash is
symbol shifted D {n E mode). The parameters of 'FIFTH’ commands
are separated by commas, as with the parameters of normal BASIC
statements. Every BASIC command has {ts own token on the key-
board but ‘FIFTH’ commands obviously do not have their own
tokens. YOU HAVE TO SPELL THEM OUT YOURSELF, INCORPORATING A
TRAILING SPACE, Its up to you whether you use upper or lower

Cdse to do this. You can even change the case in
: e {n the middle of

1000 REM TeMps\ 1ARge
{s just as legol as:-
1000 REM temps \ large
or

1000 REM TEMPS \ LARGE

You can vary the case of the parameters in much th

(the above two commands do not have any mrmeterse-sg:ea:gz-
ments as they are more usually called), Personally, | think it
Is a good idea to type the commands in ubper case and the naram-
eters In lower case. This makes the listing more readable as
well as making {t look neater. You can just as freely incorp-
grate control charocters {n ‘FIFTH’ REM statements - see page
114 of the Sinclair Programming manual.

If the command you give is wrongly spelt or does not make
sense for some regson then the computer will helpfully respond
with error "Q Parameter error”. This is usually used for the
EN function. Since this is not utilised much in games writing,
error Q very rarely occurs. Therefore error Q now takes on d
second meaning of a syntax error In @ 'ETFTH’ command. Error Q
1s also produced {f a function name {s incorrectly spelt.

Error “A Invalid argument® can occur if the arouments of G
'E1FTH” command do not make sense. For more details see the
section under the 'FIFTH’ functions. Other errors can occur but
these are unique to each 'FIFTH’ command. They are fully ex-
plained under each command description. There is one other pecul-
tarity of programming in ‘FIFTH'. Normally, when @ program IS
completed or @ jump 1s made t0 d line number bigger than exlsfing
then "0K” will be the computer’s response. However, in 'FIFTH

0K {s suostituted for error “8 End of file”. This report was
ortginally destgned for the elusive sinclair Microdrive but has
been put to this use in ‘FIFTH'. The reason for using error 8
instead of error 0 s rather technical, so 1 will not go Into it.

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030

If you RUN this, notice how it stops
with error 8.

There now follows g detailed description of each of the 25
'FIFTH’ commands: =

IEMPS

This command merely sets u. colours for succeeding ‘FIFTH’
commands. You will remember that there are ThO ways of using

the BASIC colour statements, either universally as statements

on their own or {n graphic commands to specify temporary colours.
This ‘FIFTH’ command makes the temporary colours the same 4s

the universal ones. It also transfers the state of INVERSE and
QVER which can also be set up temporarily, This is because some
'EIFTH’ commands reauire ’‘dummy’ PRINT statements preceeding

them such gs:-
100 PRINT INK 6; PAPER 1. FLASH I;

This does not print anything but changes the temporary colours.
If, however, you just wanted to use the universal colours then
precede the ‘FIFTH’ command with TEMPS. Commands which may use
TEMPS are:-

a) LARGE
b) FILL

c) REPLACE
d) COLOUR
e) PUT

Examples: -

10 RANDOMIZE 1000

20 RANDOMIZE USR 61030
30 PAPER 5

40 REM TEMPS\ FILL

50 PAPER 7

10 RANDOMIZE 1000

20 RANDOMIZE USR 61030
30 PRINT PAPER 5

40 REM FILL

Both of these routines use the FILL command. which is described
next. They both do a similar job In making the background cyan,
Notice how TEMPS (s used in the first examle.

EILL

This command s used to change the screen colours without act-
ually affecting the screen display. It is an annoying fegture
of Sinclair BASIC that you have to clear the screen, using CLS.
before new universal colours are shown. This command remedies
the problem.

The colour you want to change the screen to is put Into @
dummy PRINT statement preceeding the FILL command. e.8:

10 RANDOMIZE 1000

20 RANDOMIZE USR 61030

20 PRINT “This is q demonstration of the
FILL command.

40 PRINT PAPER RND®7; INK 9;

50 REM FILL

60 GO TO 40

This program contains @ lot of suitable points. It constantly
changes the background colour always keeping the INK colour
contrasted with it, Page 111 of tfie Sinclatr BASIC programming
manual gives information about the use of colours’ 8 &9 In
PRINT statements. You can glso use 8 & 9 1n FILL commands. their

explained below:-
L'l(s:gLézR' 8 - This leaves the appropriate type of Colour (INK,-
PAPER, FLASH or BRIGHT) as it was previously.
/COLOUR’ 9 - This can be used with either INK or PAPER. It
makes one contrast with the other, in much the same Way as in
normal, PRINT statements, e.9.

100 PRINT PAPER 8; INK 9;

when used in front of @ FILL command, this makes sure that ail
INK on the screen is in Contrast with the PAPER, which s not

changed.

Examples:-
10 RANDOMIZE 1000
20 RANDomize USR 61030
30 FOR a=0 TO 255
40 PLOT a,0
50 DRAW OVER 1,255-2*0,175
60 NEXT a
70 FOR a=0 to 175
80 PLOT 0,0
90 DRAW QVER 1;255,175-2*a
100 NEXT @

8.

t wasalready the universal

a
can you see why? Ay attribute t ¢ - not very useful.

would be replaced by the universal colou

St
RS 10 RANDOMIZE 1000

20 RANDOMIZE USR 61030

30 FOR a=0 TO 703

40 PRINT INK RND* T 2

S0 NEXT @

60 PAUSE O

70 PRINT INK RND * 7

80 REM REPLACE

90 GO TOE0 e you

i reen with coloured blocks and every time

g‘éisf;lll(:yfhzlicbﬁcks in o particular colour are changed t0
black. Press BREAK to escape from the program.

®“; REM * An inverse space

racters, or strings
This allows you to print larger than normal cha . d'iscussed
of characters, on the screen. Like e;heuo;t:;v cm: :tht 2
S
so far it has no parameters and ne g
ined by the state 0
fore {t. Wagt is printed is determ Ly
{ables x and y dete
varigbles=x, ¥, t, w, and @s. The var s
¢ the printout is to be.
where the top-left hand corner O Sl
lution co-ordinates, X
normal printing these are High reso 2k
175 inclusive. When u!
0 to 255 inclusive and y can be 0 to o s
the y co-grdinate s
rmal BASIC High resolution stotements
:?-oéu the bottom - (0,0) being the'bom ml;f; Gn;:nc: h:o;nz; -g:d:::!te
- ‘FIFTH’ ¢l
screen. [n contrast Hi-res FI ey
the top left hand co
starting from the top sO 0, O is 2l
determine the size 0
the screen, The varigbles € and W -
nt is given in the varia
characters to be printed. The helg .
which should contain @ number between 1e22. Th:e::g:: }s&géz'
in the varigble w which should contain @ number
Here are some useful values:-
@) t=l, =2 - double width
p) t=2, w=zl - double height
t=2, w=2 - double size :
g)) t=22, w=32 - A size at which a sinale choracter fills

the whole screen.

110 PAUSE SO
120 PRINT PAPER RND *7; INK 9;
130 REM FILL
140 60 TO 110

This program draws @ “moire” pattern and then proceeds to change
its colour once every second. The INK 9 {n the line 120 ensures
that the INK is never the same as the PAPER colour {.e making
the pattern invisible. You can of course use the TEMPS Command
instead of the dummy PRINT statement If the need arises ., e.g.

10 RANDOMIZE 1000

20 -RANDOMIZE USR 61030

30 REM TEMPS FILL
would make sure that the screen colours are the same ds the
universal ones.

REPLACE

The replace command is very similar to the FILL one except that
it 1s more selective in the on-screen colours that it changes.
It will only change a colour {f 1t {s another, specified, one.
You have to specify two colours so the command uses both the
universal and temporary colours. The temporary colour i{s the one
to be searched for and the universal colour {s the one which will
replace it. For {nstance:-

100 PRINT INK 1, PAPER 6.

110 REM REPLACE
[f tncorparated into g program this would change every occur-
ence of blue ink on yellow paper to the current universal colour.
‘Colours’ 8 & 9 as universal colours have their normal meaning

but 8 & 9 as temporary colours are interpreted slightly differ-
ently. Detoils below:-

Colour 8 - The gppropriate colour type {s ignored and so has no
{mportance In the search, {.e.

100 PRINT PAPER 8, INK 2;
If this was put before a REPLACE command then any attribute with

red INK (PAPER is not {mportant) would be set to the current
universagl colour,

Colour 9 - This has no importance or use in a REPLACE command.
The TEMPS commands could be used but would not be of much use,

[f the value given in x, y, t or w is non-integer then it
{s rounded to the nearest integer. I[f this is out of range
then error B will be given. A, holds the string of characters
to be printed. This can be of any length including zero
chgracters (a’null” string), The string, however, should not
contain any control characters. If you do then the computer will
.show its displegsure by replying with error ”A Invalid Argument”.
e.g.~
10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a$ = “FIFTH”
BOLETx=0: LETy=0: LETt =22: LETw=6
50 REM TEMPS \ LARGE

This example program will print ‘FIFTH’ in large enough letters
to cover the whole screen. Notice how the TEMPS command {s used
in line 50. If you preceed the LARGE command with g dummy PRINT
statement to set up temporary colours {tems then the large
characters will be printed in the specified colours. The routine
works by using part of the plot commond routine, in the 16K ROM,
to print the characters. Plegse note that the plot position is
not changed by this command.

Examples:-

10 RANDOMIZE 1000

20 RANDOMIZE USR 61030

30 LET x=0: LET y=0

40 LET t=l: LET w=2

50 LET as$= “Double width”

60 REM TEMPS\ LARGE

70 LET y=50: LET t=2: LET w=l
80 LET a$ = "This is double height”
90 REM TEMPS\ LARGE
100 LET y=100: LET w=2
110 LET ¢$= “Double size”
120 REM TEMPS\LARGE

This will print {n the three most used types of large text.

N.B. If any of the five variables are not defined then error
"2 Variable not found” will result.

SOUND

This is the command that produces those gmazing sound effects
you may of heard in the demonstration program. The BASIC BEEP
command is very limited in the sounds that it can produce, the
SOUND command ‘fills in’ the enormous sound making gap. Unllke
the commands so far describes. Sound does need parameters (4 in
all) to describe what sound to make but it does not need @
preceeding. dummy PRINT statement. You can give parameters
Ways:- .
@) As a ‘FIFTH’ function (see the section on ‘FIFTH’ functions).
This is the least used way. '
b) As a single letter variable. The varigble must however be
numeric and must not be @ subscripted varigble. If the vari-
able is not defined then error “2 variable not found” will be
produced. You are not allowed to do any mathematics in @ ‘FIFTH”
REM statement {.e. addition or subtraction.
100 REM SOUND a.b.c.d

in two

This is the usual format for g SOUND command, each of the vari-
ables describe a different property of the sound:

VARIABLE @ - THE REPEAT VALUE. It describes how many times @
sound of length b and tone ¢ should be produced and the current
tone (initially ¢) should be added to d (the step) and the sound
repeated before the particular sound statement has been finished.
VARIABLE b - The SOUND LENGTH. This describes the length of each
component nolse of the whole SOUND command .

VARIABLE ¢ - THE SOUND TONE . This describes the starting pitch of
the Sound command. This has the variable d added to it after every
repeat to find the new pitch (The NO. of repeots ls determined

TONE

Graph,

20007
150077
1000
500 —
0

F1G 2. - A Closer look ot the ohgsor noise,

[0 15" 207 25T 30' 35' 40° &5' éO‘Lw_E

::ozguaégt;':eeéogge phasor noise is actually made up of very
e e T
523 "t'g: sgzzr?:en::uzgutgag egil’:;;:c;cly I;near eqach -ma?\}i::]:? zgﬁe.
Dt it 7 o 5 Tt e S
taken to MOD 65536 (this means {t divides b\e/ g;ggn;n;o:gklt -
remainder, NOT the answer). ¥
;2;: ::t?s gmir m;:d:f;é;;: ::;:egsgg; :;eéo?l:lgzbg:ug:;ss;%
cgt:xggguglfsazht::ig tlaelw;tnlg é:etsgnzgzebg?os:. -For o0d sounds
length given in b, All :heoosgzrtgﬁb;:lé:ndxza: ggn;:eo:ognd

to 65535 Inclustve except this one which must be | to 255 {nclusive

variable B - Between 3 and 100

Variable C - Between 0 ans 2000
Lo ey oy {f going up or between 2000 and

Variable D - Between | and 500
e g if golng up or between 65000 and

Unlike during a normal BEEP s
tatement, the SOUN
the BREAK key while producing the sound. D command checks

by the a varigble).
VARIABLE d - THE STEP VALUE. This is the value that Is added t0 Examoles: -
the last tone after every repeat to find the new tone. e.9. 10 RANDOMIZE 1000
10 RANDOMIZE 1000 20 RANDOMIZE USR 61030
20 RANDOMIZE USR 61030 30 LET a=RND * 20 + 3
30LETO=10:LETD=5:LETC=’200:LETO=150: 40 LET b=RND * 10 + 3
REM SOUND a.b.c.d ; 50 LET c= RND * 1000
This produces a ‘phasor’ like sound. The graph below shows how 60 LET d= RND * 200 + 50
the phasor noise is made up. 70 IF RND>.5 THEN LET ¢ = AND ° 1000 + 4000:
LET d=RND * 50~ 65400 ’)
80 FOR e=1 TO 3+RND « 10
90 REM SOUND a,b,c.d,
12
| 13
E £
100 NEXT e :, = =or. r
110 GO TO 30 i
Press BREAK to escape from this program. It makes random sound | The last paremeter tells GET where to store the datg. This
should be a string from a$ to z$. [f there was dlready a variable

effects.

N.B. Although the variable g,
throughout this description you
and z could have been used just d
same variable twice or even more

e.9.

b,c and d have been referred 0

do not have to use them. W.X.y

s egsily. You can even use the
times in a single SOUND command

100 REM SOUND e.a.e.z, is perfectly legal.

GET ;
GET and PUT (described next) are used together. They are very
powerful commands. They allow you to put part of the screen
dispolay into @ BASIC string variable using the GET command and
then PUT the Information back onto the screen. GET has five
parameters, 4 to tell it from which part of the screen to get
the data from and 1 to tell it in which BASIC string the data
should be stored. It ls used in the form:-

100 REM GET a,b.c.d.a$

A and ¢ must be 0 to 21 inclusive and b and d, 0 to 31 inclusive.

As you can see GET uses PRINT positions, not High resolution co-
ordinates. The reason for this is stmple. the attributes (which
gre glso saved by GET) are stored in character positions so it
would be difficult to save the colours if GET was a high resolution
command. The data which 1s stored is always ind rectangle, (A,b)
being the top left hand corner and €.d) belng the bottom right
hand corner of the rectangle. In order for this to work properly

¢ must be greater than or eaual to a and d must be greater than

or equal to b - otherwise you would have a rather strange rect-
angle, the right hand side being more 1eft than the left hand side
or the top being below the bottom! Fortunately, 1f co-ordinates
do not make sense then error “B Integer out of range” will be

produced.
(a,b)

(Line Number, Column
Number) .

(c,d)

called as etc. then it {s deleted and ri
eplaced by the new version.
You cannot slice g string or use g subscripted string array i.e,
100 REM GET a,b,c,d,c$(2 TO 20) is not allowed.

10 RANDOMIZE 1000

20 RANDOMIZE USR 61030

30LETa=0: LETD=0: LETC=2[: LETd =0

40 REM GET a.b.c.d xs
This puts the screen datg In the left most column of the screen
in the variable xs. The only way to replace the dgta is to use
Ehe PUT command as the data Is stored in g special format. Error
2 Variable not found” occurs {f one or more of the ftrst'four
parameter variables are not defined.
Examples:-

10 RANDOMIZE 1000

20 RANDOMIZE USR 61030

30 LET @=0: LET b=0: LET c=2l: LET d=31
40 LET x=0: LET y=0: LET ¢ 22:

LET 38 =GET. Bk
50 REM\TEMPS\LARGE\GET a.b,c.d.as

60 FOR a=0 to 31

70 REM TEMPS PUT b.a.as

8Q LET, b=bs0.6875

90 PAUSE 50
100 CLS: NEXT 3

This draws “GET” {n large letters across the screen and then
proceeds to move it {n a ‘south-easterly’ direction, The PUT
command (which is described next is used in this example program.

BUT
:gls command, which {s used in conjunction with GET, allows you
colxlaut data from a string back onto the screen after it has been
. Dﬁtt:teg by GET. [t has 3 parameters, the first two tell It where
=L the data on the screen and the third one tells it in which
urec& :ge b:utudtu be used {s. Unlike GET, this command must be

a dummy PRINT statement or
b a TEMPS command. PUT {s

14,

100 REM PUT x.v.a$. i

1 and is the line number. Y,]

must be in the range of 0 to 2 e ;
én trs1e other hand, must be in the rangeé of 0 to 31 as it is

umn number. If you do not keep the numbers within these ranges

then the computer will show-its lngratitude by responding with

error “B Integer out of range”. The string vcrtublecx:uzti:mgc::e }
ven srevicusly cefned 1n o T o, O G P mter |
exists or it was not de m t o ‘
:tt:;izgys of telling whether it was or not) then e;;g‘r:eszy\ézr:‘gum i
not found” will be produced. Under normgl circums i
precede the PUT command with a TEMPS 1nstructlor'1 unles e
to do something special with the calours. Onl\; ﬁgioﬁgsexommed
agre useful in PUT dummy PRINT statements, their
below:-
type |
OURS 8 - The particular colour -
E?kk, PAPER,BRIGHT or FLASH). Normally, the colou:;: ;:g;: e:e
saved by the GET command would be PUT back onto
COLOUR 8 is a way circumvent th#sabehﬁé:ug.e.g. |
PRINT PAPER 8, INK 8; BRIGHT &; 3 ' eure i
11?10fr0m: of a PUT command, this dummy PRINT statement would e :
that the screen colours would remain the sa;e.
COLOUR 9 - This is not as yseful as colour 8.

PRINT INK 9 e
}g?s will not change the on-screen PAPER colour but will ensu

ith it.
the INK colour is contrasted W s
g:SERSE and OVER are also very useful in PUT durmy PRINT statemen

s left as It was previously

NVE which-
?N\QIERSE 1 - Will print the display in inverse to the way in

ollected by GET.)
tl)\gE;ui E Normally, PUT will obliterate the display that was al

ne two displays will be
on the screen. By using OVER ! t

;1:33:6 together see page 113 of the Sinclair BASIC Programing
manual . |
100 PRINT OVER 1; INVERSE 1.
This leaves the display exactly as it was previously but does
change the on-screen colours (attributes).

16.

This uses the ‘FIFTH‘ LET command and BASIC calculation to make

the invader jump 12 pixels right. |
Examples: - ‘)

10 RANDOMIZE 1000 i

20 RANDOMIZE USR 61030 |
30 LET a=1: REM OBJECT bomb, d !
40 REM PRINT bomb, v
50 REM LET t =SCREEN bomb
60 PRINT CHR$=t

Lines 50 & 60 use the LET command to find out what the bomp is

printed as.
OBJECT
Up until now the commands have not been really related ::“g?:xgg-
S e L e s o o o are
ds. The real power of ”
?Z?t‘:nustnq the OBJECT command. The objects can move abo% :gehave
screen completely independantly of BASIC. The BASIC you u:d L
to laboriously erase and reorint an object to move 1; aro icd
screen, This is slow s well as being impractical, 1 'VOL"FIFTH'
move more than @ couple of objects simultaneously. With g L
all you have to do is tell the computer the following icA. Loes :
@) What the object s to be printed as e.d. The letter s
full stop. b) In what direction is the object going to g . In' E
Up, down or left ‘FIFTH’ allows 16 different directions.) :
what colour the object is to be printed e.s. Red,, Yellew 0 . . !
d) The speed at which the object Is to move. In ‘FIFTH youtime
also define how many pixels an object will jump @t any one othér
An object can Jump as small as on pixel, this is 8 times smo!
raphics.
?::.: B’ﬁg}{? czn move the object around the screer. When t:ej: ott!ject
goes off the edge of the screen or collides with unother O t:is 5
then a special user defined service routine is called, but i
described later. 'FIFTH’ allows you to give objects na\'les.um :
makes programming easier than if you had to cuote @ long n eou i
every time. [f you were writing a space {nvader type aroqrar ym :
may want 40, say, invader objects. [t would be venl/ difficu ? T
refer to each one individually, Fortunately 'FIFTH’ has g soO :
to this problem, Like @ BASIC arragy you can define a nunberlo 1
objects with the same name. ‘FIFTH', however {s more flexible in

A S B AN

St o o st st e e

154

If the datg stored In the string takes up the whole screen,
say, then when you use PUT {t will not fit completely on the
screen unless you start orinting at (0,0), In fact the PUT
command will only put on as much as it can, anything else is
left unorinted. GET AND PUT also allow vyou to have a limited form
of animation. By drawing each frame and getting them into dif-
ferent strings you can rapidly go through them using the PUT
command. Be warned however that the memory requirements for this
can be quite considerable. A screenful of data needs of 6K of RAM,
Examples:-
10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 PRINT “This is @ downward scroll”
40 PAUSE 10
50 G0 SUB 8000
60 GO TO 40
8000 LET a=0: LET b= 0: LET c=2l: LET d=31
8010 REM GET g.b,c.d.as$
8020 LET a=1
8030 REM TEMPS PUT a.b,as$
8040 PRINT AT 00; “(32 spaces)”
8050 RETURN
This demonstrates how you can use GET and PUT to do a downward
scroll. The subroutine at line 8000 actually does the scrolling.
You can also fix it to do rightward scrolling but NOT upward or
leftward scrolling, can vou think whyz

LET

This is almost exactly the same as the BASIC LET statement. The
main difference is that the variable vou are defining must be @
single letter, non-subscripted, numeric variable. Its format is:

100 REM LET q=('FIFTH’ expression)

The @ represents the variable that you are defining. The 'FIFTH’
expression would usually be g ’FIFTH’ function. You could have a
variable as with normal parameters but this could be done with a
BASIC LET statement. You may be wondering what use all this i{s.,
It allows you to access the fifth functions in BASIC and then do
calculations on them (which you connot do In ‘FIFTH'). e.g

100 REM LET x= COLUMN invader
110 LET x=x+12: REM MOVE {nvader, x,Line invader.

the way you can gccess them. You can efther concentrate operations
on an {ndividual or collectively on the whole group. Some pieces
of object information can be unique to each subscript. In fact only
colour and the ‘Print as’ character have to be the same for all
subscripts. You may remember that the RANDOMIZE 1000 at the be-
ginning of ‘FIFTH’ program tells the computer how much memory to
reserve for the object data. One thousand bytes s usually used
because [t is large enough for just about any aoplication. To work
out exactly how many bytes vou will need use the below method:

No. of letters in the name 10+6xMNg of subscripts.

From this you can see that 10 invaders would take:
7+ 10+ (6 x 10)=77bytes - not very much.

An object command has the format:

100 REM OBJECT (name), (Fifth Expression).

The name can be any length and can contain any charater (Except~:”)
It {s best, however, to stick to letters and numbers (Alphanumer{c
characters), The 'FIFTH’ expression is evaluated and tells ‘FIFTH’
how many subscripts with that name you want, This can be anything
from 1 to 255 inclusive. If you define an object with the same
name as one already defined then ‘FIFTH’ will not take any notice
of the new version. It will, in fact, still store the new object
data so defintng objects with the same name is just a way of wasting
memory. You may be wondering where 'FIFTH’ keeps all this data.
What it does s to lower RAMTOP (which is tnitially set at 61029)
by the amount given i{n the first RANDOMIZE statement, For {nstance,
after running one of the example programs, type:
PRINT PEEK 23730+ 256 * Peek 23731 (This finds RAMTOP)
This will reply with 60029 which is 1000 bytes lower than the in-
ttial setting of 61029. The {nitial RANDOMIZE instruction can have
any argument except 0. [f there s not enoush room in the computer’s
memory then it will reply with error "4 out of memory”.
Now for an example:-
10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a=100: REM OBJECT Missile, g
This will define 100 objects called *Missile. Now change the 100
in the line 30 to 250. When you RUM it this time, the comouter res-
ponds with error “4 out of memory®. This (s because there s not

enough room reserved for 1000 objects. Change the 1000 in line 10
to 10000.

18.

This reserves nearly 10K of memory for the objects. more than
enough. When an object s defined, you have not given information
about speed, direction etc, The computer has to make them up. The
data 1t uses is listed below:-
@) CURRENT SUBSCRIPT - Set to ALL

b) COLOUR - Set to the current universal calour.

c) PRINT _ A Space character (CHR$ 32)

d) DIRECTION - Direction 0 (Upwards)

e) SPEED - Moves once every five seconds (250 fnterrupts)

It mokes one pixel jumps.

£) SCREEN POSITION - It is ENABLED but Is on Line 176, Column O

g) ERASE STATUS - It will be overprinted under any circumstances
but this is possible with the above parg-
meters anyway,

N.B. (Until you have read the rest of the manugl you will not be

gble to understand this).

Examples:-
10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a=10: REM OBJECT {nvader, a
40 REM PRINT invoder, X
50 REM DISABLE invader

60 FOR g=1 TO 10 o

70 REM USE invader, @
80 LET b=84: LET c=20-20 * a: REM MOVE invader
c.b

90 NEXT @ -
This will print ten X's across the centre of the screen. Actually
these are the ten “invaders® defined in line 30. The program uses
g variety of commands not explained vet to achieve this result..
Note:-
a) Any commands (or functions) that need an object name (EXCEPT

OBJECT) can be given g string variable name tnstead. This, as i

usual, must not be subscripted or sliced. e.d.
100 REM PRINT Invader, A

e

and
100 LET a$="1invader”: REM PRINT a$, A

Both have the same meaning.
If the string variable is not defined then error #2 variable not
found” will be produced.

19.

b) If you use a name that has not beed defines in an OBJECT
command then error “a Invalid Argument” will result.

c) When referring to or defining object names it makes no
difference whether you use upper or lower case. e.g:-

PLANE, plane. Plane and pLAne all refer to the same object type.

UsE
Thgs {s one of the commands which determines whether a particular
object type will have its subscripts accessed indivdually or as a
whole group. This s the command which will allow you to access
subscripts individually Its format {s:-
_ 100 REM USE (object type name), ('FIFTH’ expression)
The object name {s that of the object type that you wish to Gccess
on a single subscript basis In suceeding operations. The 'FIFTH’
expression gells the computer which individual subscript you wish
to use. e.g. {f you defined 10 objects called a “torpedo” then this
‘FIFTH’ expression can be evaluoted to a number between | and 10.
If the number {s not between 0 and 255 inclusive the error “B
Integer out of range” will be produced. If the number Is then
bigger than the number of subscripts (in this case blgger than 10)
then error “6 number too big” will be the result.
10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a=10: REM OBJECT lnvader, a
40 LET a=7: REM USE invader, a
This defines an object called “invader” and then sets the ‘CURRENT’
subscript to 7. If you change the LET @ 7 in line 40 to LET a 1l
then when RUN, the program will stop with error 6. This is because
you have tried to use @ subscript that does not exist. Now change
the LET @ 10 {n lfne 30 to LET a=11 and the program will work all
right again.
:gtrfor:ny t?én: that if you use 0 for the second parameter them some
wou e produced becduse subscr
eyt o cripts start at 1. In fact this
100 LET 0=0: REM USE bomb, .G (or s ;
has the same meaning as ALL, which 1s describes next‘?me‘:mng sintlar

Examples: -
10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET 0=100: REM OBJECT rocket, g
40 REM PRINT rocket, X DISABLE rocket
Cont/d

— , . -

20,

50 FOR a=1 TO 100

§0 REM USE rocket, G

70 LET x= INT (RND= 256): LET v= INT (RNDw176)
80 REM MOVE rocket, X.¥ :

: 90 NEXT @ "
This randomly positions 100 X‘s around the screen. x:duizsum?:ed
of unexplained commands but notice how the USE comntf 'indlvtduclly
{n line 60. The program goes throush all 100 rocket’s

and places each at @ random position.

ALL
This is the command which allows you to access all s:;bsi;;o;: n?:-a
particular object type at the same time. It {s used in g

(Name of object type)
I parameter to tell it which

need a second
unlike USE, ALL does not . vou want o QCcess all

subscript you want to USE as it assumé "
subscripts. After using ALL, every operation vou do to that par

fcular object type will be done to every subscrint i.er'uerl\flio: Liid
an operation to move d wpgcket” to position (231,67 1tt e
had been used on the #pocket” object type all subsr:;d D st o
move to (231,67). Conversely, if USE had been carried ou -
npocket” then only the selected individual would move to ’
and all the others would stay where they are.

10 RANDOMIZE 1000

20 RANDOMIZE USR 61030 :

30 LET g =10: REM OBJECT invader. 4

4Q REM DISABLE {nvader\PRINT invader, H

50 FOR=1 TO 10

60 REM USE invader, @

70 LET x = RND %255: LET V= RND =175

80 REM MOVE invader X.¥

90 NEXT @

100 REM ALL lnvader

e 76: REM MOVE nvader G.Y

120 LET v = 176: REM .
If you RUN, ten H'S will appear ot random positions on the sc;ti'en:n
If you press a key then they will all disappear. Now change
100 o 100 LET z=10: REM USE {nvader, Z _—
If you RUN the program ggain and press any key then only one H W
disappear. This i1lustrated the power of ALL and USE. Try and
account for the difference tn the two RUN'S.

2ls

N.B.Although a USE command with @ second parameter with a value

of 0 is the same gs an ALL command, it is good programming practice
to use ALL except in situations where it is much more ‘elegant’

to utilise the first method. A good use for this property of USE

{s given later in this manual.

PRINT
This is the command which describes what character an object will
orint as. This can be any character, including graphic symbols
and user defingble graphics. It has the form:-

100 REM PRINT (object name), (Character)
If no such object with the name you give exists then the computer
will respond with error “A Invalid Argument”. [f the character you
give is @ token (anything with more than one character In it i.e.
PRINT or SCREEN) or unprintable (anything with a code below 32)
then error A will result. The only other character that vou can-
not use 1s the space (CHR 32). There is however g graphic symbol
which Is the same as ¢ space. [t s gccessable on key 8 in GRAPHICS
mode. An individual subscript cannot have {ts personal ‘print as’
chardcter. In fact, every subscript in each object type must be
printed as the same character. This alse means that the PRINT
command 1s not affected by ALL or USE commands.
Examples:-

10 RANDOMIZE 1000

20 RANDOMIZE USR 61030

30 LET g=1: REM OBJECT missile, A\DISABLE missile\

PRINT Missile, s

40 LET x'z124; LET y= 84: REM\MOVE misstle, x.y
Changing the second parameter of the PRINT command in line 30:0
to other characters. ’

COLOURS

This command determines what colour an object is printed In. Like
PRINT, only one set of colours can be defined per object type. The
command must be preceeded by a dummy PRINT stotement. This s the
colour that the object will be printed in. You could of course use
a TEMPS command {f you wanted the cbject to be printed in the
current universal colour. A colour command is used in the format:-

100 REM COLOUR (Name of object type)
‘Colour’ 8 has its usual meaning although ‘colour’ 9 is not used
by the COLOUR command.

22.

Examples: -

10 RANDOMIZE 1000

20 RANDOMIZE USR 61030

30 LET a=l: REM OBJECT invader, @

40 REM DISABLE invader\PRINT invader, X

50 PRINT INK 2; REM COLOUR invader

60 LET x =124: LET y=84: REM MOVE invader x.y
Try changing the dummy PRINT statement in line 50 to print the
"X* {n different colours.

V N
This is the commond which decides the direction in which an object
will move. 'FIFTH’ gives vou g choice of 16 directions. eachoorl\:
signified by g number between O and 15 inclusive. Direction o
an upward direction, 1 is slightly rightward to this (or et;stwod
This scheme carries on until directton 15 which i{s Just leftwar

to direction 0.

F16. 4 - How the VECTOR directions agre arranged.

s 150) 2

13 3
12 4
11 5
107 9 8 7 6

has the format:-
e cmrmundmn REM VECTOR (name of object type), (new

direction)
Unlike PRINT or COLOUR, this command takes notlce» of ALL and USE.
If the ‘Current’ of the object type is ALL then all subscrimi:s
will have their direction changed. If, however, the curr'enth s
USE then only the direction of the individual selected in the
USE command will have 1ts direction altered. If tnendlrectlon
value 1s not between 0 and 15 inclusive then error B Inteqe; .
out of range” will result. If the direction value is not a whole
number then it Is rounded to the nedrest one. Even if an objetl:tbe
is disabled (see the disabled command) then the direction w‘ied
changed but will not take effect until the object is re:enub ¥
The same .will happen if the object 1s at an ‘Off-screen position
(described under the MOVE command).

24,

hen the object would be mov?d 25 times @
second. From this it can pe seen that the formuld:

= 50
¢ movements per second =
omer? The value of the first expression

If the value was 2 t

e peed and
?’:stfsngll very well but there is @ trade off between s

j when the
how fast BASIC is. Since the objects are movzgr;a;et;r::: e I
BASIC program would be normally executed it O e, Thls 12
more often an object Is moved, the slower i}: vl
e truelguc :13;92 :::2:; 23 (:gjizcdlfflcult problem. It
e : in the
z:::n?; t\t:e form of expression NO.2 wljicr;T r:t'xs;o:l;zy bitxels &
range of 1 to 255 inclusive. It tells 'FI e (Dated
should move the object every time {t IS 1;2 s e tnillcs it
during an interrupted response. Most of e e
you may have seen in the demonstration program B e
movement of one pixel 50 times a second. 1’hes:ed B
gphics possible but are expensive on the sp! . It i3
e han a few of these objects moving simu £l
huveor;m;ze: uhcsvuaver, to try and use these smoofh griitr:;ssuzrgss
gozcs,lble as the effect produced by the oblectst ::Joieeo e
reen can be auite incredible. If you wan B el
= scb t do not want the connected slowness of BASIC D
iﬁ:e?\m:er for both the first and s;c;nﬂfzz:m:z:q;;:rbemg .
ameters may become equal to 2, Sk
:’2: gg‘)’ect will still have the same overchl;;«::dbgtge:'timn i
will be a little more ‘jumpy’ (but still

f v 0 tim 2Con will
xel 5 imes G sec! d it
MOVer lent) . Instead O moving one pi

2 pixels 25 times @ second. L
Detnc;vtggouvpfor the speed increase In BasIC. If ycuhhrisfch;noverun
o; size of the second parameter without the first tciical Adi L
go:ed of the object will be increased. Now for a pra

10 RANDOMIZE 100(161030

20 RANDOMIZE USR

30 LET a=1: REM OBJECT thing, @

40 REM PRINT thing, <

50 LET d=12: REM VECTOR thing d :
60 LET a=1: LET b=l: REM SPEED thing a.

70 LET x =255: LET y= 84: REM MOVE thing XY

80 GO TO 80

. 23,
Examples: -

10 RANDOMIZE 1000

20 RANDOMIZE USR 61030

30 LET a=1: REM OBJECT ball, g

40 REM PRINT.Boll, o

50 REM SPEED ball, a,a

60 LET a=8: REM VECTOR ball, g

70 LET x =124: LET y=84: REM MOVE bail, X,y

80 GO TO 80
When you RUN this program gn "o appears dt the centre of the
screen and moves downwards until it goes off the edge of the screen.
Press BREAK. Change the value of g line 60 to get an {dea of the
different directions of the VECTOR command, The program uses g
variety of unexplained commands to achieve this end. Lines 30-60
just sets up the object called ball so that the computer has
enough Information to move it around the screen which {t does after
It has been positioned in the middle of the screen by line 70. Line
80 1s necessary to allow the object to move. This s because if an
error report {s produced (i.e. In this case error “8 End of file”)
then all moving objects on the screen will come to g halt,
SPEED

This Is the command which allows YOu to change the speed at which

an object moves on the screen. 'FIFTH’ allows a tremendous choice

of speeds but more important it determines how smooth the graphics
of a program will be, ‘FIFTH’ allows you to define how many pixels
an object will jump at any one time. A speed command has the format:-
100 REM SPEED (Name of object type), (‘FIFTH’ expression),
(expression) .

This command, 1ike VECTOR, {s affected by ALL and USE, The first
'FIFTH’ expression describes the delay In 1/50 of @ second before
the object is moved. and must be between 1 and 255 inclusive.
Fifty times a second, the Spectrum’s Z80 A Processor receives an
‘Interrupt’ from Sinclairs ULA chip which is also inside that black
case of your Spectrum, This Interrupt signal tells the processor

to read the keyboard and increment the frames counter. However,
when using 'FIFTH’ the processor also has to move ‘FIFTH’ objects.
This expression therefore, tells the fifth system how many inter-
rupts it has got to watt through before [t i that particular
objects turn to be moved. As you can see @ value of one would mean
that the object would be moved every time and therefore 50 times

@ second. If the value was 50 then the object would only be moved
once every second,

:4‘1,\“,4, R N b R S ks Sl

25,

The SPEED command is used i{n line 60, On the first RUN, @ "2”
will move across the screen from right to left, This is at the
smoothest speed. Change the values in line 60 to get the ‘hang’
of the SPEED command. You should now know what every command in
the listing does except the move command, although its use should
be quite obvious.
Examples:-
10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET @ = 10: REM OBJECT cars, \DISABLE cars\PRINT cars
4O0FORG=1[TO IO
50 REM USE cars, a
60 LET b = I: REM SPEED cars, @, b
70 LET y = [70: LET x = 20 a: REM MOVE cars, x, v P
80 NEXT a
90 REM ALL cur\ENABLE cars
100 GO TO [00
This program places 10 "#‘s at the.bottom of the screen. Then
they start moving but everyone is slightly slower than the previous

ane, looking from left to right. The SPEED command is used in the
USE mode in line 60.

HOVE

This command {s used to move g particular object to @ given position.
It is used in the form:-

100 REM MOVE (Name of object type), (x co-ordinate), (v co-ordinate)
Like VECTOR and SPEED, MOVE 1s affected by ALL and USE, The x
co-ordinate Is @ 'FIFTH’ expression which must have a value between
0 and 255 inclusive. [f the expression evaluates to g non-integer
then [t Is rounded to the nearest one. The y co-ordinate must also
have a vale of 0 to 255 inclusive olthough numbers bigger than

175 do not have the usual meaning. As you may remember, ‘FIFTH’
Hi-res co-ordinates have them starting from the top of the screen

so that (0,0) {s the top left hand corner of the screen. This s

in contrast with the BASIC PLOT, POINT and CIRCLE statements which
have their y co-ordinate starting from the bottom of the screen.
There are 176 possible y co-ordinates as there are 22 lines each

of 8 pixel height (22 x 8 =176), The two bottom lines of the dis-
play cannot have ebjects printed on them but they provide @ useful
area to print scores and times etc. as there i{s no danger of them
being overwritten by the moving objects. If, say, the y co-ardinate
was 175 or the x co-ordinate was 251 then there would not be

26.

room to fit the whole of the 8 x 8 character qn the
:2:2::. °'FIF‘TH" only prints on as much as it can, anything else
{s left unprinted. This gives the impression that there is an
area off the screen that cannot be seen. It is as If the screin
{s just a window on g larger ared. The co-ordinates always r:lerte
to the top left hand corner of the character. If the y c0-0r m:he
{s greater than 175 then the object is not printed anywhere o: .
screen. The object will cease to0 be moved by interrupts and the!
fore the only way to make [t redppedr on the screen is to usT
another MOVE instruction. Please note that MOVE dogs not imp ?zided
ment an interact response cycle even If another object was o
with. You have to do this manually by using the FIND command fg
check the pesition that you areé going to move the object t0. c;t;
will probably not understand this until you have read the rest
this manual). A MOVE instruction qutomatically erases the old
image of the object.
10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a= l: REM OBJECT object, @
40 REM PRINT object. (N)ISABLE object
50 LET x=100: LET y=100: REM MOVE object X.Y
This program sets up a single object called *object® (confused)
and then preceeds to move it tO position (100,100}, If you chgn?::e
the values of x and y in line 50 then you can get some ldea O
way in which MOVE works. Try positioning the object near the
bottom of the screen.

Examples:-
10 RANDOMIZE 1000

20 RANDOMIZE USR 61030
30 LET a=l: REM OBJECT arrow d
40 REM DISABLE arrow\\ PRINT arrow.”
50 LET y=84
60 FOR x 0sTO 255
70 REM MOVE Qrrow, X.Y
80 NEXT x
90 GO TO 60
This program illustrates how you can use the MOVE command to give

you animation. This Is obviously not as good as 'FIFTH’ outomtt‘lc
movement but ot least BASIC 1s not slowed down. You can vary ;()eR
speed of the movement by {ntroducing a STEP statement in the

{nstruction at line 60. For instance, @ STEP 2 doubles the speed

of the movement.

28+

11y using the FIND command. A limit

You have to do this manud e e A i

service routine is also not called if
going off the edge of the screen.

les:-
e 10 RANDOMIZE 1000

20 RANDOMIZE USR 61030
30 LET gai: REM OBJECT arrow, G\PRINT arrow A
DISABLE arrow
40 LET x=0: LET y=38
50 LET x1: LET y<0
§0 REM RMOVE arrow, X.¥
70 GO TO 60
f that used for the MOVE
xample program is a modified one. O
;:;lo?e program, [t uses the RMOVE mstruc;lo: torr:t;\v/‘e ::zrggggw
ed of the @ ’
geross the screen. To {ncrease the spe! =
the size of the x In line 50. Change the LET yaQ tn line 50 t

LET y=1 and the arrow will move diagonally.

EIND

This command is used tO

given screen position. 1t has Ehe ;Eon:é;nnte)

REM FIND (x co-ordinate), (¥ C
;ﬁg x co-ordinate must be Ln the rur;;g (;f ?u:?viss ni‘:c;gfévgfar;:e
ne :

the y must be {n the range of 0 to et
ic variable J$ and the n

object type is returned in the BAS -
sic varicble J. [f, however,

the subscript is returned Ln the BA

there is no 'FIFTH’ object dt that position then ii)wé‘:uli ?ewirﬁ

null string (a string containing no characters =

have the value 0.

4, REM MOVE arrow, XY

determine whether there is an object at a

0 RANDOMIZE 1000

20 RANDOMIZE USR 61030

30 LET a=l: REM OBJECT {nvader,

A\DISABLE {nvader

40 LET x=1: LET V=

50 REM FIND X.¥

60 PRINT J$, |
This should print #{nvader” and "1 at the teD of the ir;;:em&f
you miss out the PRINT command in line 30 -then the rou St
still work. In fact, the FIND command does rot 100K c1“1: el
at all. It simoly goes through the co-orindates of a g
and Uses the first object that seems to near enough to a9
{tion you gave. The name of the object type, which is ¢ :

A\PRINT invader

100: REM MOVE invader X.¥

27.
Note:-
When you first define an object It {s moved to position (0,176).
As you can see, this i{s an off screen position. This is to
prevent the object Immediately appearing on the screen after defin-
{tion when, perhaps vol do not want it to. After setting up the
parameters of the cbject it can be moved Into the active screen
areg using g MOVE command, '

R_MOVE

This Is similar to the MOVE command. The R stands for relative
MOVE. This works in g way similar to Sinclair BASIC'S DRAW command
You do not give an actual screen position but one to be added to
the existing one. A RMOVE has the format:-

100 REM RMOVE (Name of object type), (relative x), relative y)
The name of the object type to be used works in exactly the same
Woy as In the MOVE command. The x relative co-ordinate {s added
to the current x co-ordinate to produce the new one. This rel-
ative x co-ordingte must be in the range of 0 to 255 inclusive.
The relative y co-ordinate works in exactly the same way and must
be in the range 0 to 175 inclusive, The co-ordinates are in @ ‘wrap-
round’ form sq if you add 1 to an x co-ordinate that was previously
255 then the new x co-ordinate would be 0. The vy co-ordinate {s
also ‘wrap-round’ but wraps at 176. For instance {f you added |

to @ y co-ordingte that was previously 175 then the new vy would
not be 176 but 0. This clso means that you cannot move objects to
off screen positions using the RMOVE command, you have to use
MOVE. One problem with ‘FIFTH’ expressions {s that you cannot have
negative numbers. The RMOVE command works alright as long as

you are moving down or right but consider what happens when you
try to move left or up. The DRAW statement allows negative argu-
ments but @ ‘FIFTH’ expression does not. The solution to this
problem is similar to that used for decreasing pitch in the SOUND
command. [f you want to move the x co-ordinate left then use the
formulg:-

Number to use as first parameters 256 - number of steps left

This works as long as you do no want to move 0 pixels left, but
this {s not really moving left anyway,

The formula for the y co-ordingte is:-

Number to use as second parameter=176 - number of steps up

so for instance, to move 2 pixels up and 1 right the values would
be (1,254), Like the move command an interact service routine {s
not called if the move would mean a collision with another object.

29.

ts always given completely {n lower case letters, even if the
object was defined completely In upper case.
Examples:-

10 RANDOMIZE 1000

20 RANDOMIZE USR 61030

30 LET a=10: REM OBJECT abc, a\PRINT gbc.H

40 LET a=1: REM SPEED abc.a.a

50 LET g =1+ RND%9: REM USE abc.a

60 LET x=124: LET y =175: REM MOVE abc.x.y

70 LET y=040

80 REM FIND x.v

90 PRINT AT 5,0; j$ "(3 spaces)” ‘J

100 GO TO 80
This program defines 10 subscripts of “abc”. It then raondomly
selects one of these and moves it up the screen. One of the pos-
itions it has to pass throgh is monitored by a FIND command whose
results are printed on the screen., From the results you should be
able to determine which subscript [t was.

DISABLE)
This command gives you the facility to stop an object moved by
{nterrupts. It {s used in the form:-
100 REM DISABLE (Name of abject type)
Like most of the commands connected with 'FIFTH’ aqutomatic move-
ment, this command is effected by ALL and USE. The given object
will be disabled as far as qutomatic movement is concerned. The
object must be re-enabled using an ENABLE instruction for move-
ment to continue. All other commands such as MOVE still work as
normal. Commands that just give information (e.g. PRINT or COLOUR)
also still work all right although their effect is not shown until
the object is re-ENABLED. When first defined, an object is enabled.
The only time that It i{s disabled (except manually in a BASIC
program using DISABLE) {s after It collides with another object or
goes off the edge of the screen In which can an gporopriate service
routine 1s called which would usuglly re-enable it anyway.

10 RANDOMIZE 1000

20 RANDOMIZE USR 61030

30 LET a=l: REM OBJECT ball, G\PRINT bail.0

40 REM SPEED ball, ag.a

50 REM DISABLE ball
. 60 LET x=124: LET y=170: REM MOVE ball, x,v

70 GO TO 70

30.

this program will print most of a "0” at the bottom

gzezhzugcreen. [f you now delete line 5O then the “pall” will then
move up the screen. This is because the DISABLE instruction at
line S0 prevents the “ball” from moving. Remember that {f you
DISABLE an chject then it will not be erased from the screen and
can still, therefore, be involved in a collision with another
object.
Examples:-

10 RANDOMIZE 1000

20 RANDOMIZE USR 61030

30 LET a=1: REM OBJECT ball, a

40 REM PRINT ball, O\SPEED ball, a.a@

50 LET x =124: LET y =165: REM MOVE ball, x.¥

60 IF INKEY$ = “0” THEN REM DISABLE ball

70 IF INKEY$ ="1” THEN REM ENABLE ball

80 GO TO 60
This is @ modified version of the last program you may have typed {n.
You can start or stop the ball at any time as it travels to the
top of the screen. Key “0° stops the ball and key #1# gearts it ggain
N.B. If you try and DISABLE an object which is already disabled
then the command will have no net effect.

ENABLE
This is the complementary commond to DISABLE, as you might expect.
It has @ similar format to DISABLE l.e.

100 REM ENABLE (name of object type)
Everything that was explained about the DISABLE command is appli-
cable to the ENABLE command, Except, of course, the object s
enabled {nstead of disabled.

Examples:-
The example given for the DISABLE command will aslo function as

an examole of the ENABLE command, which Lt contains in 1ine 70.

This command is used to define which line number will be jumped tO
{f an object goes off the edge of the screen. 'FIFTH’ s very power-
ful in the sense that it will automatically jump to d certain line
number when an object reaches the edge of the active screen ared.

It will perform something similor to a BASIC GO SUB but no GO SUB
{nstruction is needed in the main loop of the program. In fact the
service routine (the BASIC routine that ls called when a limit
condition occurs) must be terminated with CONTINUE, not RETURN.

Mast of this, however, 1s explained under the LMTPARAM command. It

32,

70 60 TO 60

8000 REM LMTPARAM

8010 IF 1=0Q THEN LET z<7

3020 IF 1= 1 THEN LET 221l

8030 IF 1= 2 THEN LET z=15

8040 IF | =3 THEN LET 273

8050 LET z= 2 INT~(RND#&3) "

8060 IF z=15 THEN LET 2aZ -

2070 REM VECTOR bail, 2\ENABLE ball

8080 CONTINUE _ .
This program produces an »g* pouncing ground the screen. do no

worry about how it works at the moment.

INTERACT
This 1s similor to LIMIT but determines the line that will be

jumped to when two 0bjects collldf with each other. Its form Is:-
REM INTERACT (‘FIFTH’ expression
r:ggt of the details are the sclx;tsa:o Igrt:nintlti;émn?ﬁﬁmﬂ
following information apo .
1(;hc;::lmnr.ts. Before g service routinehcinl(:e wé :me:gc ::'m;h:hé:t:;e
preter must finish the statement tna . o AL H
on happened. This means that 'EIFTH’ must tembo
i:éliz;urmotion pertaining to the collision or I:mlt i?gﬂlf:xngése
There has to be room for more than one lot of in om;d 2
a lot of events all happen dt once. It can now be to O oF
temporary store is the “service stack”. In fact therels ghd
these, one for LIMIT'S and one for INTERACT'S. Thirelf e
16 outstanding service routine calls in each ftuc " g
16 become outstanding at one time then error “4 out 0 Lol 710
results. This error is a bit strange as {t can occur @ 4.
since the objects are being moved and collisions etc. urelmk D
stored at the same time BASIC is running. The rule 1slto a1
the possibility that the error was caused by an overf wlstunt
service stacks before spending ages looking for @ non ex -
error in the actual program. Under normal circumstances, e
service stacks should never overflow unless you are doln? fFlrst
thing terribly wrong. The service.stacks are LIFO (LQSthanpened
out) structures so that the last object condition that Di Lo
{s always the first one to be processed. As well as this, neen
have priority over limits’ so before.a limit comttto?Fi:T:,) s
to, there must be no outstanding 1nterqct conditions.

31,

s up to the programmer to write a sort service routine at the given
line number to handle the limit condition. A LIMIT command has
the form:-
100 REM LIMIT (‘FIFTH’ expression)
The 'FIFTH’ expression gives the line number ‘to be Jumped to if
@ limit occurs and must evaluate to between 0 & 65535 inclusive
otherwise error “B Integer out of range” will result. [f the
expression comes to more than 9999 (The highest number possible)
then when g limit condition occurs, no line will be jumped to and
S0 program execution will carry on as normal. Now for an example:-
10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET g = [000: LET b = [: REM LIMIT g/0BJECT thing,
40 REM PRINT thing.® \\SPEED thing.b.b
50 LET x=124: LET y =175: REM MOVE thing, x.y
60 LET a= 0
70 GO TO 60
1000 SToP
Programs similar to this already used as examples in this manual
do not stop when the $ reached the top of the screen. This program
however, does stop with error "9 STOP statement”. The stop state-
ment {s at line 1000. As you can see, there Is no actual state-
ment to jumo line 1000 in the main loop of the program. This is
Caused by a limit condition occuring when the object tries to go
off of the screen. You may winder what the seemingly redundant lime
60 Is doing in the program. This s needed because 'FIFTH’ cannot
jumo to @ service routine if the main loop of the program consists
of a single GO TO statement which Jumps .0 itself. There are other
rules concerning this to be complied with but these are explained
under the LMTPARAM command. When you first execute the "RANDOMIZE
USR 61030“ at the beginning of the program, the limit line (s set
at 10000 so that if @ limit condition occurs then no service
routine will be called (Mainly because the computer does not know
whether you have written one or not!).
Examples:-
10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET 6=8000: LET b=1: REM OBJECT ball, B\LIMIT @
40 REM PRINT ball, O\SPEED ball, b,b
50 LET x=128: LET y=88: REM MOVE ball, x.,v
60 LET a= 0

33.

not allow ‘nested’ service routines so another service routine
will not be called while another {s in progress. The interpreter
knows that {ts fintshed the service routine when it comes to the
delimiting CONTINUE statement.
Examples:=
10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET @s1000: LET b=2: REM INTERACT a\OBJECT,b
40 REM PRINT bomb,0
50 LET aal: REM SPEED bomb, a.a\ ERASE bomb
60 REM USE bomh, a
70 LET ¢=8: REM VECTOR bomb, ¢
80 LET x =124: LET y=0: REM MOVE bomb, X,V
90 REM USE bomb, b
100 LET y= 175: REM MOVE bomb, x.y
110 LET aal:
120 60 7O 110
1000 REM INTPARAM
1010 BEEP 2, - 30
1020 REM ALL bomb\ ENABLE bomb
1030 CONTINUE
This program defines two objects hurtling towards egch other. When
they meet, a series of low frequency BEEP’s are produced.

LMTPARAN

LMTPARAM stands for limit parameters. The command ls used {n limit
service routines to assign BASIC variables with information about
the limit condition. This commond has no parameters after it. When
{t 1s executed 1t returns the name of the object type that went off
the screen in the BASIC variable h$. This will always be composed
entirely of lower case letters so remember that when you do tests

on this variable. The actual subscript of the object type that went
off the screen is returned in the BASIC variable h. The direction
that it went off the screen |s returned {n the varicble 1. This

Is 0 If It went off the top of the screen, | for the right hand

side, 2 for the bottom and 3 for the left hand side. The co-ordingtes
the object had just before it went off the screen are kept - the
object is not ereased and still remains on the screen. What happens
In fact, is it is disabled to stop It causing another limit condition
on its next move. You must remember, however, that the object may

not be near the edge of the screen If vou gave g particularly large
number for the second parameter of its SPEED command. It is the Job

. 34,
of the service routine to 'point’ the object in another direct-
fon or do something gopropriate and then re-enable the object.
Even if you are not going to use the information given by a
LMTPARAM command, you must still put it in. It i{s best, therefore
to always put it as the first line of your service routine. A
service routine i{s finished when the interpreter comes to g
CONTINUE statement, this would be the last line of vour service
routine. As was pointed out In the description of the INTERACT
command, another service routine will not be called while one is
being executed. What .haopens therefore, if the limit service
routine marks the end of that particular part of the program and
no CONTINUE statement {s needed. The answer to this is to add the
line “POKE 23681,0” This tells “FIFTH* that the service routine
{s finished, just like g CONTINUE statement would.
How for a working example:-
10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a=2000: LET x=1: REM OBJECT ball.
X\LIMIT a
40 REM SPEED ball., x) PRINT ball,0
50 LET x=124: LET y=100: REM MOVE ball, x,vy
60 LET @¢=]: GO TO 60
2000 REM LMTPARAM
2010 LET b=(7 AND {=0) + (1] ARD i=D)+
(15 AND 1=2) +(3 AND {2 3)
2020 LET b=b+ INT (RND23)
2030 IF b =15 THEN LET b=b-1€
2040 REM VECTOR h$, D\EMABLE h$
2050 CONTINUE
This s a similar example given under the LIMIT command. [t
produces a “0“ bouncing ground the screen. The main loop of the
program 1s {n line €0 which as you can see, Is @ ‘do nothing’ loop.
Lines 10 - 50 merely set up the object, From line 2000 onwards s
the service routine. Hotice how it starts with a LMTPARAM command
and ends with o CONTINUE statement. Line 2010 makes the b variable
equal to @ sultable parameter for the YECTOR command but pointing
in the order direction to which the object went off the screen.
Line 2020 adds some randomness to the VECTOR selection, otherwise
the object would just bounce the same way all the time. Line 2030
makes sure that this variable does not come to more than 15 and
If 1t does it subtracts 16 - moking direction 16 equal to direct-
fon 0. Line 2040 actually changes the direction. Notice how h$
Is used for the name Instead of ‘real’ name. In this particular

36.

routine to those used in the main loop of the program.
It {s certainly very difficult to get used to servicg
routines. Many programs bugs can be attributed to using
the same varigble (s) in both the service routines and
the main program loop. Also watch out for other things
that you do in a service routine that may effect- the

main program execution, 1
tine.
Line 6040: This terminates the service rou
In most programs you would want to do different things cccordintho
the object type that went off the edge of the screen. You coul(ii ?ng
this by @ number of IF...THEN GO TO....statements near the beginn

of the service routine 1.e.
9000 REM LMTPARAM
9010 IF hé= “invader” THEN GO TO 8000
9020 IF h$ = "bomb” THEN GO TO 8500
9030 IF h$ = "missile” THEN GO TO 7000

etc.
10 RANDOMIZE 1000 -
20 RANDOMIZE USR 610
30 LET a0 =8000: LET b=1: REM OBJECT arrow, B\LIMIT a
40 REM PRINT arrow,\SPEED arrow 0.b
50 LET 2= 4: LET x=0: LET y= 0 REM VECTOR arrow.Z
60 REM MOVE arrow X,Y
70 LET @= 1: GO TO 70
8000 REM LMTPARAM
8010 LET y=y 8: [F y=170 THEN STOP
8020 REM MOVE arrow, X,y ENABLE arrow
8030 CONTINUE
ight, When it
This program produces an arrow moving from left to r
gets to the edge of the screen it goes back to the left hond side but

8 pixels lower and continues the cycle.

Examples:-

INTPARAM
This command s very similar to the LWTPARAM except it 1S used for

Interact service routines. The main difference are the variables

that it defines and thelr meaning. A collision obviously involves

two objects. The name of the first object s given in h$ and its
subscript number in h. The second object has its name returned in ($
and 1ts subscript number in 1. As usual, the names are given entirely
in lower case., so remember this when performing tests on them.

354,

example we know that hs will always be assigned as “ball” but
In other programs this may not always be the case. Here is more
sophisticated version of the same program, it moves 8 halls
simultaneously:-
10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a=6000: LET b=8: REM OBJECT ball,
B\LIMIT g
40 REM PRINT ball, 0
50 LET a=1: REX SPEED ball A,A
60 LET x=124: LET y=50: REM MOVE ball x.y
70 LET a=1: GD TO 70
6000 RE™ LMTPARAM
6010 LET b= INT (RND#3)4 (7 AND i=0)+ (1] AND i= 1)+
(15 AND 1=2)2(3 AND | 3)
6020 IF b> 15 THEN LET b =b- 16
6030 REM LET c=CURRENT h$ \USE hs,h\VECTOR hs,
b\ENABLE h$\USE hs. ¢
6040 CONTINUE
This program contains @ lot of Interestine points, Here is a des-
cription of it:-
Lines 10-60: Set up the object type called “ball”. Line 30 also
sets the service routine at line 6000, |
The main loop of the program, As you can see this |
contains the seemingly redundant “LET a = [, This ls
because the main loop of the program must not contain
a single statement {.e. None of the below are legal:-
70 FOR @ = 0 TO [000000: NEXT a (FOR 1s only executed once)
70 60 TO 70
70 IF 251 THEN GO TO 70 (Always goes back to line 70)

Line 70 :

Line 6000: Gets the information necessary for the service routine,
Line 6010: Makes b equal to a suitable number for g VECTOR command.
Line 6030: This performs most of the work of the service routine.

Flrst of all, it makes ¢ eaual to the current subscript
being used of hs. In this particular program this is
not really needed but is fncorporated to illustrate g
point. As you con see the second command is a USE
{nstruction. This changes the current of h$ which could
spell disaster for the main loop of the program. A rule
when writing service routines s to leave everything
exactly as you found it. Be very careful about BASIC
varigbles. Alwoys use different variables in the service

37.

When a collision occurs both of the {nvolved objects are disabled.
The two objects never actually touch each other. In fact although
thecharacters are printed on an 8 X 8 pixel grid the 'FIFTH’
svstem tests the bordering pixels to see if they are set ta the
INK colour. If they are then 'FIFTH’ knows that it has collided
with another abject. One spin-off from this is thot {f one of the
print as characters s equal to g space the collision can never
occur because It will never be detected. If one of the things
Involved in the collision is not recognised as a ‘FIFTH’ object

then it is given the name ““(the null string) and has
e Lo subscript

Examples:-
10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET @=5000: LET b= 2: REM INTERACT A\OBJECT
star, b
40 LET @=1: REM PRINT star.s\ SPEED star, a,a)\
ERASE star
50 REM USE star, @
60 LET x=0: LET y=150: LET z=4; REM MOVE
star, x,Y\VECTOR star z
70 REM USE star b
80 LET z212: LET x=255: REM MOVE star v\
VECTOR star, z
90 LET a=1: 60 TO 20
5000 REM INTPARAM
5010 BEEP.05,50
5020 REM USE hs, h\ENABLE hs\USE 18, 1\ENAB
5030 CONTINUE \ N \ e
This program produces two horizontal “=”'s movin
g in opposite
directions. When they coll{ide a BEEPIMG noise s produced as the
Interact service routine s called.
N.B. - (When you write an interact service routin
e and want to
test whether the BASIC variables hs and {$ are the names of part-
fcular object types do 1t both ways f.e.)
100 IF (h$="bomb* AND i$<“missile”) OR (hs ="Missile” AND {$ =
bomb*)
THEN @EC: viivvivinnsonns

E 2 ' 5
(Over page)

38.

object ls to erase (print a seace)
d then print the character at the
11 but ts auite slow since the

The usual was to actually move dn
the old image of the character an

n. This is all very we o
?:?Fﬁ’:?;\i/gtem gctually has to print two characters (the sp

ter).

to erase the old image plus the re-print of the u;lt’:\?‘t i:grg;
der certain conditions 1t {s only necessary to Aoy

i nis will automatically erase the old image. :
ey t: 'print gs’ character must have c'oorder of pape -
el e el to the numper of jumps per move of that perftcu e
e e$:a wwo diagrams below explain why the letter "0 ccmmle
::\j?:cdtin "ﬁon ergse” mode with g jump of one pixel per move W

the letter “J” cannot. . -
= ! 1 ._‘“I.-

e T 0P]]
T i ™E_Ci%atmd - E

el

ST Ve T I B

b
bt

RINT or SPEED commands., 'FIF\’:; eﬁteﬁﬁioto
see whether it is possible to put that Da\:tig:{?rwc:” ™
non-erase mode, If this is possible then ‘F R e
the ERASE command does 1s tO make sure that the 3ble G Is
is in erase mode, even If non-erase mode 1s DOSS ¢
and USE. [ts format is:- . .
RESH R 100 REM ERASE (Name of objecttivge; U
printin

wondering what good this is as ey
Z?’l;s:q:ngee uses more time and therefore slows thehspet:g 01; Bc:uruc-
The answer 1§ that there is @ trade-off between U ?ts q‘.,mql i
ter printed in non-erase mode rdoesn’t look Nhe:eobjecf o
therefore never detects @ collision with ancrclc'::a:t o Ml Y
erased chardcter never takes part in an inter R o e
fore unless the other character s printed 1: incter s Lo
therefore detect the presence of the first cha ¢

Whenever you use the P

40.
NO
RMAT: No (Mame of object typel
EgSCRIPTION: Returns the number of subscriptions of the given
object type.
COLUMN
FORMAT: COLUMN (Name of object type) _—_—
DESCRIPTION: This function returns thelcolunn number
ordinate) of the given object type. accorqing
to ALL and USE. If the CURRENT of that ob;ict
type is ALL then error “A Invalid argument results.
LINE
)
FORMAT: LINE (Mome of object type
DESCRIPTION: This returns the line number (v co-ordlmte)ugg
the given object type, according to ALL and "
If the CURRENT of that object type is ALL then
error “A Invalld argument” results.
SCREEN .
)
FORMAT: SCREEN (Ngme of object type
DESCRIPTION: Returns the code of the character that the given
object type wlll be printed as. Use the CHRS
function to get the actual character.
ATTR '
)
FORMAT: ATTR (Name of object type
DESCRIPTION: Returns the colour that the given object type is
printed fn. It is given in the seme format as vou
would get from a normal ATTR function - see page
116 of the Sinclair BASIC programming manual.
R
)
FORMAT : DIRECTION (Name of object type
DESCRIPTION: Returns the direction (0 to 1S inclusive) of the
given object type, subject to ALL and USE. If the
current of the given object type is ALL then error
A Invalid argument” will result.
CURRENT
FORMAT: CURRENT (Nome of object type)
DESCRIPTION: Returns the current subscription of the given

object type. If the current is ALL then 0 is re-
turned.

1
R e o e e e
33,

ever another regson for using non-erase mode, it is explained
below: -

The problem lies with the fact that the T.V. picture is being
output at exactly the same time that the objects are being moved.
The problem only rears its ugly head when you are moving more than a
few erased characters at the same time and even $0, only when the
characters are at the top of the screen. For the problem to redch
Its full extent the objects have to be moved every interrupt or

50 times a second. The first thing 'FIFTH’ does s to erase the
character by printing a space over it. It sometimes just so happens
that the ULA chip reaches that portion of the display file where
the character is and outputs it to the T.V. at the exact moment.
'FIFTH’ d1d not have time to print the new version of the character
S0 the object visibly disappears from the screen because 'EIFTH
only had time to print the space over the old Image. This effect
does not happen with non-erased cbjects since they are never com-
pletely absent from the display ot any time, Pledse note that al-
though the object may not appear on the screen for a short period
of time it Is still In the disnlay file. The answer to this problem
Is to try and use as few erased characters as possible and {f you do
use them keep them to the bottom of the screen as much as possible.
Please note that you sometimes see another form of corruption where
@ character is only partly printed. This Is caused by the ULA
reaching that particular portion of the display when ‘FIFTH’ is
only part way through printing the new image of the character.

(N.B - Although the SPEED command may only refer to q single
subscript, ail subscripts of the given object type are tested for
compatability with non-erase mode.)

THE ELETH: FUNCTION

When a 'FIFTH’ command has @ numeric parameter you can either put

@ BASIC variable there or a ‘FIFTH‘function. The use of single
letter vartables has been explained but the use of 'FIFTH’ functions
has not. They basically allow you to ’get back’ the Information

put in using most of the other commands. Many functions have
parameters themselves, usually the name of object types. Below is

@ description of all 13 of them:-

s
4],

MASK_

FORMAT: MASK (Name of Object type)

DESCRIPTION: Returns the colour mask for the given object
type. It is used for PAPER or INK 8 etc. When
converted to binary, any bit that is set sign-
{fies that the corrosponding bit from the actual
colour (returned by ATTR) is not taken from that
byte but from what was already on the scr-en,

VELOCITY

FORMAT: VELOCITY (Name of object type)

DESCRIPTION: Returns the delay, In 1/50th‘s of g second, bet-
ween succesive moves of the given abject type,
according to ALL and USE,

JUMPS

FORMAT: JUMPS (Name of aobject type)

DESCRIPTION: Returns the number of pixel jumps an object will
make, every time It is moved, subject to ALL and
USE. Error A If the current of the supplled
object tyoe [s ALL.

LIMIT

FORMAT: LIRIT

DESCRIPTION: Returns the number of the line at which the limit
service routine is sited. If this is bigger than
9999 then this signifles that no limit routine
{s to be called.

INTERACT

FORMAT : INTERACT

DESCRIPTION: Returns the line number of the interact service

: routine. If there {s one. If this is bigger than
9899 then this signifies that no interact service
routine i{s to be called.

STATUS

FORMAT: STATUS (Name of object type)

DESCRIPTION: Returns a | If the object s enabled or 0 {f

disabled. Subject to ALL and USE but If the current
s ALL then error A will be produced.

‘FIFTH’ allows you to disable the BREAK key from within a program.
'POKE 65233,1” disables 1t while "POKE 65239,0” enables it again.
As well as offering more program security this is a useful solution

to the problem that you sometimes press BREAK by mistake during
G program,

42,
HINTS AND TIPS

r

using 'FIFTH’ you will have to save
er for it to work

(Q)

when you write a program

'EIFTH’ as well as the BASIC program {n ord

on Re-loading.

To SAVE 'FIFTH’:- SAVE “Data “CODE 61030,4506 (This also saves
the user definable
graphics)

Remember to VERIFY:

To LOAD 'FIFTH": 6 (This also restores

the UDG'S)
after the recording of the BASIC program.
to-run and at the entry ooint {ncorp=-

LOAD “Data "CODE 61030, 4501

Save 'FIFTH’ {mmedigtely
Have the BASIC program au

orate the line:-
CLEAR 61029: LOAD “Datg” CODE §1030,4506

which will lower RAMTOP ond then load ‘FIFTH'.

(o) The use of CONTINUE

You can usually use the CONTIMUE command to restart program
not, occurs. When using

execution after an error, {ntentional or

'EIETH’, however, this s not possible. To avoid this problem it
{s best to organise your program structure into small subroutines
and to make corrospondingly great usé of the GO SUB statement.
You can then test edch subroutine individually - minimizing the

amount of bugs.

{¢) The use of RANDOMIZE

In most ‘FIFTH’ programs, line 20 is "RANDOMIZE USR 610307, You
may think that the USR function always returns the same number
for the seed of RWD so that random numbers alwdys start from the
same point. This is not so since @ ‘random’ number is always re-

turned by the USR function.

(d) I ! !
A REM statement containing 'FIFTH’
last statement on that particular line.

ments then they are ignored.

commands must always be the
If there are more state-

B R R e

g o
P

s

e

R

Descrintion

Instructions for ‘FIFTH’ ...

Temps DOURRRRRRRR
Replace R
e B 5 B R RN PSS %
Sound S » S
Get

- TRT I PR ——

Let)

Object

Use e SRR
All i
Print RO
Colours
vector L DO
e
e .
RMove
Disable
Enable
Interact Moy
Intparam L
Erase P
5
Column
Screen O S
Attr :
Direction - R 3
i
Velocity
Interact
Status

Break Key Dlsuole. ' %

LNDEX

seses et

Yeaveeaaas

IEEREE)

